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Visual processing depends critically on the receptive field (RF)
properties of visual neurons. However, comprehensive characteriza-
tion of RFs beyond the primary visual cortex (V1) remains a challenge.
Here we report fine RF structures in secondary visual cortex (V2) of
awake macaque monkeys, identified through a projection pursuit
regression analysis of neuronal responses to natural images. We
found that V2 RFs could be broadly classified as V1-like (typical Gabor-
shaped subunits), ultralong (subunits with high aspect ratios), or
complex-shaped (subunits with multiple oriented components). Fur-
thermore, single-unit recordings from functional domains identified
by intrinsic optical imaging showed that neurons with ultralong RFs
were primarily localized within pale stripes, whereas neurons with
complex-shaped RFs were more concentrated in thin stripes. Thus, by
combining single-unit recording with optical imaging and a compu-
tational approach, we identified RF subunits underlying spatial fea-
ture selectivity of V2 neurons and demonstrated the functional
organization of these RF properties.
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Visual perception depends on processing of the input signals
through multiple stages of the visual pathway. At each stage

of processing, neuronal representation of the input is governed
by the receptive field (RF) properties of individual cells. Char-
acterization of neuronal RFs is a crucial step for understanding
the mechanism of visual processing.
Compared with the primary visual cortex (V1), neuronal RFs

in the secondary visual cortex (V2) are much less understood.
Previous studies have shown that in addition to orientation and
direction selectivity (1, 2), similar to that found in V1, neurons in
V2 also exhibit selectivity for more complex spatial features such as
angle (3–5), illusory contour (6), complex shapes (7), texture (8),
and segmentation of the scene (9, 10). Given the large number of
potentially relevant visual features, traditional methods using stim-
ulus sets with parametric variation of particular visual features are
not efficient for comprehensive RF characterization.
An alternative approach is to fit the stimulus–response re-

lationship of each neuron by a parametric model. The relation-
ship is ideally probed with large ensembles of visual stimuli, and
the resulting model can be used to predict the neuronal responses
to other arbitrary stimuli (11, 12). Natural stimuli are well suited
for this purpose, because the visual system has evolved to process
natural scenes, which contain rich spatial features that are more
effective than random stimuli in eliciting cortical responses (13).
Such an approach imposes no prior assumption about which
stimulus features are relevant to the cell and is thus well suited for
unbiased RF characterization.
In the present study, we used large ensembles of natural im-

ages to probe the neuronal responses in awake macaque mon-
keys and a linear–nonlinear model (14, 15) to represent the RF of
each V2 neuron. The subunits of the RF models were identified by
a method adapted from projection pursuit regression (PPR) (16–
18), which does not require stimuli with specific statistical properties
and is thus well suited for analyzing the neuronal responses to
natural stimuli. Compared with other optimization methods, a dis-
tinct feature of PPR is to optimize one subunit of the RF model at a

time to reduce the dimensionality of the problem. Using this
method, we revealed the spatial RF structures of many V2
neurons. Furthermore, we identified cytochrome oxidase stripes
of V2 by optical imaging of intrinsic signals. Data from single-unit
recording were used in combination with the latter information to
determine the spatial organization of cells with different RF prop-
erties with respect to the stripes of V2.

Results
Analysis of RF Subunits and Performance of the RF Model.We recorded
well-isolated single-unit responses of V2 (n = 360) and V1 (n = 124)
neurons from four hemispheres of three macaque monkeys. The
recording was made while the monkey was performing a simple
fixation task, and a large ensemble of temporally random grayscale
images drawn from a natural scene database (19) were presented in
a region covering the RF of the recorded neuron at a rate of
20 images per second (Fig. 1A andMaterials and Methods). We used
a linear–nonlinear model for quantitative description of the RF for
each neuron (Fig. 1B). In the RF model, the firing rate was de-
termined by passing each image (S) through a set of linear filters
(F, subunits), and the output of each filter was transformed through
a static nonlinear function (f) before summation. The spatial
structure of each subunit, its associated static nonlinear function,
and the number of subunits were optimized by the PPR algorithm
based on the recorded responses to natural images (Materials
and Methods).

Significance

Using a computational method to analyze neuronal responses
evoked by natural scene stimuli, we performed a comprehen-
sive identification of secondary visual cortex (V2) neuronal
receptive fields (RFs) and found several novel spatial structures
of RFs. This approach imposes no assumption about the selec-
tivity of the neurons, thus allowing a more objective search of
RFs. Furthermore, by combining single-unit recording with
optical imaging of intrinsic signals, we examined the spatial
distribution of V2 neurons exhibiting different RFs, with respect to
the V2 stripes defined previously by cytochrome oxidase staining.
The identified V2 RFs could be explained by convergence of V1
neurons with well-known primary visual cortex RFs. This study
illustrates that computational approach is useful for comprehen-
sive RF identification in higher visual cortices.
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Examples of the RF models obtained by this analysis for V1
and V2 cells are shown in Fig. 1 C and D (Upper), including the
subunits representing the spatial structure of the RF (Left), spatial
spectrum of the subunits (Center), and the corresponding static
nonlinear functions (Right). We then used the RF model of each
cell to predict its responses in a test dataset obtained from the same
recording session but not used for computing the RF model (Fig. 1
C and D, Lower). The performance of the model was measured by
the correlation coefficient (CC) between the predicted and mea-
sured responses, and the distributions of CCs for both V1 and V2
neurons are shown in Fig. 1 E and F. The PPR method performed
significantly better than the spike-triggered average/covariance
analysis for natural stimuli in both simulation and experimental data
(Fig. S1). For further analyses of the RF structure, only neurons
with CC > 0.1 were included (223 V2 and 99 V1 cells).

Spatial Structure of RF Subunits of V2 Cells. Various types of RF
subunits found for V1 and V2 cells are shown in Fig. 2A, to-
gether with the spatial spectrum and associated nonlinear func-
tions. Consistent with previous reports (20–22), we found that for
most V1 neurons the RF contained multiple Gabor-like subunits
of the same orientation (Fig. 2A, cell 2), whereas a small number
of them were unoriented with a single center/surround subunit
(cell 1), similar to that found for lateral geniculate nucleus
(LGN) neurons. However, the RFs of V2 neurons were more

diverse. Some of them were “V1-like,” with typical Gabor-shaped
(cell 4) or unoriented (cell 3) subunits. For other neurons, al-
though the RF subunits can also be modeled as Gabor functions,
the ON/OFF subregions were much more elongated than those in
typical V1 RFs (cells 5 and 6), and they were referred to as
“ultralong” RFs. Furthermore, we found V2 neurons with
“complex-shaped” RFs contained multiple preferred orientations
(cells 7–9). Diverse complex-shaped RF structures were also
reflected by the spatial spectrum of the subunits. As illustrated in
Fig. S2A, these complex-shaped RF subunits could be decomposed
into two Gabor functions with different orientations. These RF
subunits may underlie the distinct RF properties previously
reported for V2 cells, such as selectivity for combinations of
orientations (3–5) and 2D translation invariance to spot stimulus
(23, 24).

Quantitative Characterization of RF Structures. To facilitate quanti-
tative comparison between V1 and V2 neurons, we fitted their RF
subunits with 2D Gabor functions. First, we fitted each subunit with
a single Gabor and computed the aspect ratio (AR), defined as the
ratio between the widths (SDs) of the Gaussian envelope along
the axes parallel and orthogonal to the sine wave grating (Fig. 2B).
The AR of each neuron was averaged for all excitatory subunits. We
found that the AR distributions were significantly different between
V1 and V2 neurons (Fig. 2B; P = 0.006, Kolmogorov–Smirnov test),
with more V2 neurons exhibiting longer RFs (with high ARs).
Second, we fitted each subunit with the sum of two Gabor

functions and quantified its complexity by a dual component index
(DCI), defined as R•θ, where R is the energy ratio between the two
Gabor functions (ranged from 0 to 1; Fig. 2C), and θ is the angle
between the orientations of the two Gabors (ranged 0° to 90°; Fig.
2C). Large DCI indicates that the RF consists of at least two
Gabors of different orientations but comparable amplitudes. Be-
cause center-surround (unoriented) subunits could also be well
fitted by two orthogonal Gabor functions with similar amplitude,
we identified them by fitting each subunit with a difference of
Gaussians (DOG) function; a subunit was classified as center-
surround if the goodness-of-fit was >4 (Materials and Methods)
and excluded from the DCI analysis. The DCI of each neuron was
averaged for all excitatory subunits. We found that V2 cells
showed significantly higher DCI than V1 cells (Fig. 2C; P =
0.0004, Kolmogorov–Smirnov test), indicating a higher percentage
of complex-shaped RFs.

Evaluation of RF Models. To test whether the ultralong and com-
plex-shaped RFs obtained by PPR are functionally relevant, we
tested the performance of the RF model in predicting the neuronal
responses (in the test dataset) after manipulating various features of
the RF subunits. For cells with ultralong RFs, we first showed that
best-fit Gabor functions for the subunits well represented the RFs,
with CC close to or slightly better than that of the measured RFs in
predicting the neuronal responses (example in Fig. S3B and sum-
mary in Fig. S3C; P = 0.35, Wilcoxon signed-rank test). Further-
more, we found that shortening the length of this Gabor function by
60% worsened the prediction of the model, as shown by the in-
creased deviation of the predicted from the measured responses
(Fig. S3A), especially for natural image stimuli containing long
edges aligned with the RF subunits (Fig. S3A, Insets). Progressive
shortening of the Gabor function (from 100% to 40%) resulted in
monotonic reduction of the model’s performance, as evaluated by
CC (example in Fig. S3B). The summary of this analysis for all cells
with AR >2 showed significant decrease of CC at 60% and 40%
length (Fig. S3C; 80%, P = 0.06; 60%, P = 0.017; 40%, P = 0.0008;
Wilcoxon signed-rank test). Thus, the ultralong RFs significantly
contribute to the neuronal responses to natural stimuli.
For cells with complex-shaped RF subunits, we first tested the

necessity of each subunit. As shown by an example cell with three
subunits in Fig. S4C, deleting any one (upper curve) or two (lower
curve) of the subunits impaired the model’s performance as in-
dicated by the decrease of CC. We also noted that the first subunit
contributed much more than the second and third subunits
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Fig. 1. Analysis of RF subunits. (A) Random sequences of natural images
were presented and single-unit recordings were made in either V1 or V2. L.S.,
lunate sulcus; dashed line, V1/V2 border. (B) Linear-nonlinear RF model. Each
subunit is represented by a linear filter (Fi) depicting the spatial RF structure. S,
stimulus. The response (xi = S·Fi) of each linear filter is passed through a second-
order polynomial fi(xi) = ai + bixi + cixi

2 before summation. n, number of subunits;
i, the ith subunit; R, neuronal response. (C and D) Prediction of responses by RF
models of example V1 (C) and V2 (D) cells. (Upper) Left, spatial RF; Center, spatial
spectrum of RF; Right, static nonlinear function, with data points (mean ± SEM)
depicting measured responses and curves representing polynomial fits of the
data. (Lower) Gray, measured responses in test data set; black, model prediction.
CC betweenmeasured (test data) and predicted responses was 0.38 in C and 0.37
inD. (E and F) Distribution of CCs for V1 and V2 cells. Black dashed line, threshold
for all cells used for further RF analysis.
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(Fig. S4C), and the latter’s contribution was further assessed by com-
paring the measured responses with the predicted responses before
and after their removal. We found increased deviation of the pre-
dicted from measured responses by removal of the second (Fig. S4
A, arrow, and B, right arrow) or third (Fig. S4B, left arrow) subunit,
especially when the images contained spatial features that matched
the complex-shaped subunits (Fig. S4 A and B, Insets). Removal of
one or two high DCI subunits for high DCI cells (DCI > 30) also
showed significant decrease of CC (Fig. S4D; one, P = 0.004; two,
P = 0.00002, Wilcoxon signed-rank test).
Furthermore, we tested whether each oriented component in

the complex-shaped RF subunits was important. As shown in
Fig. S4E, removal of an oriented component from one subunit or
from all subunits of the example cell reduced the model’s perfor-
mance measured by CC. Performing this analysis for all high DCI
cells (DCI > 30) also showed a significant decrease of CC (Fig. S4F;
P1 = 2 × 10−6, Pall = 9 × 10−6, Wilcoxon signed-rank test). Thus, the
non–V1-like RF structures identified with PPR contribute signifi-
cantly to V2 neuronal representation of natural images.

Organization of RFs in V2 Functional Domains. A hallmark of neo-
cortical circuits is the nonrandom spatial organization of neurons
based on their functional properties. Previous studies on monkeys
using cytochrome oxidase (CO) staining have delineated area V2
into alternating thin, pale, and thick stripes (25–27), in which color,
orientation, and direction selective cells are preferentially located,
respectively (1, 28–31). We next inquired whether cells with iden-
tified RF subunit structures are organized into different V2 stripes.
To target specific stripes for single-unit recording, we implanted

a cranial chamber with penetrable artificial dura near the lunate
sulcus (Fig. 3A), which allowed optical imaging of intrinsic signals
and subsequent electrophysiological recordings from both V1 and
V2 over a duration of 3–4 months. We measured four functional
maps (color, orientation, direction, and ocular dominance) using
intrinsic optical imaging under anesthesia (Fig. 3B and Fig. S5 C–F)
and identified the thin (30), pale, and thick (31) stripes (Fig. 3B and
Materials and Methods) that were previous identified on the basis of
CO staining. The locations of 155 recorded V2 cells from three
hemispheres of two monkeys were registered to the three types of
stripes using blood vessels as landmarks (Materials and Methods).

Using the same RF analysis procedures described above, we
found that cells with ultralong RFs (AR > 2; Fig. 4A; cells 3 and 4)
were primarily located in the pale stripes (Fig. 4B), although both
pale and thick stripes contained more high AR cells than V1 as
shown by the cumulative distribution of ARs (Fig. 4C; V1 vs. V2
pale stripes: P = 0.00002; V1 vs. V2 thick stripes: P = 0.03; V2 thin
and pale stripes: P = 0.0001; V2 thin and thick stripes: P = 0.02;
Kolmogorov–Smirnov test). On the other hand, cells with complex-
shaped RFs (high DCIs, Fig. 4A; cells 1 and 2) were located pref-
erentially in thin stripes, as shown by cumulative distribution of
DCIs (Fig. 4D), and a significant difference was found between V1
and V2 thin stripes (P = 0.004, Kolmogorov–Smirnov test). Simple
cells with center-surround RFs were also concentrated in thin
stripes (Fig. S6). Most cells in thick stripes had V1-like RFs (Fig.
4A; cells 5 and 6), which were widely distributed in all stripes.

Discussion
Using natural stimuli and the PPR method, we found that two
types of RFs are prominent in V2 of awake macaque monkeys.
The ultralong RFs have eluded detection using traditional visual
stimuli. The existence of such cells in the visual system has been
suggested by the human psychophysical evidence that visual
contrast sensitivity could be enhanced by elongating but not
widening of the Gabor stimulus (32). The neurons with complex-
shaped RFs presumably correspond to previously identified RFs
showing preference for multiple orientations (3–5) and RFs with
2D translation invariance to spot stimulus, known as complex-
unoriented (23) or spot cells (24).
The function of visual neurons could be inferred by their RF

properties. Intuitively, the ultralong cells integrate stimuli over a
larger area along the orientation axis and thus could facilitate the
perception of illusory contours by V2 (6). From the perspective of
information processing, V1 cells reduce redundancy in the coding
of natural scenes by maximizing the independence of outputs
across neurons (33). Independent component analysis performed
on the modeled outputs of V1 to natural stimuli resulted in V2
RFs with optimal stimulus more elongated than V1 cells (34),
suggesting ultralong cells found here in V2 may further improve
the coding efficiency for natural images.
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Fig. 2. RF subunits identified by PPR. (A) Example V1
and V2 RFs. Each box contains subunits from one cell
(gray, V1; black, V2). Cell 1, V1 cell with a center-
surround subunit. Eccentricity (Ecc), 2.4°. (Left) Linear
filter. (Center) RF spectrum. (Right) Nonlinear func-
tion (data points in spikes/s; error bars, SEM; curves,
polynomial fits). Cell 2, V1 cell with two Gabor sub-
units. Ecc, 7.6°. Cell 3, V2 cell with a center-surround
subunit. Ecc, 3.7°. Cell 4, V2 cell with two Gabor
subunits. Ecc, 2.2°. Cells 5 and 6, V2 cells with ultra-
long subunits. Ecc, 2.2° and 2.1°. Cells 7–9, V2 cells
with complex-shaped RF subunits. Ecc, 2°, 3°, and 3.8°.
(B) Cumulative distributions of aspect ratio for V1
(n = 99) and V2 (n = 223) cells. (Inset) Gabor fit for
subunit 1 of cell 4. X and Y, widths of Gaussian en-
velope (SD) orthogonal and parallel to the sine wave
grating. AR of each cell was averaged from all excit-
atory subunits. (C) Cumulative distributions of DCI for
V1 (n = 88) and V2 (n = 193) cells. (Inset) Fit of subunit
2 of cell 9 by sum of two Gabors (G1, G2). θ, angle
between two Gabors; kGk2, RR G2dxdy. The DCI of
each cell was averaged from all excitatory subunits.
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The complex-shaped cells may be well suited for the detection
of corners or T-junctions and thus providing information for
surface analysis (35) and object recognition. A previous neural
network modeling study identified V2 RFs with structures simi-
lar to complex-shaped cells found here and suggested these cells
provide sparse coding for natural images (36). These cells may
also provide translation-invariant representation for natural im-
ages, because independent component analysis on translation-
invariant representation of natural image patches resulted in
double-Gabor filters (37) that are reminiscent of some of the
complex-shaped cells found in this study.
In addition to the ultralong and complex-shaped RFs in V2,

we also observed many V2 RFs similar to those found in LGN
and V1, consistent with previous electrophysiological studies (1,
2). These V2 cells had larger RF sizes but conserved the spatial
shapes that could be well represented by a wavelet function
[Laplacian of Gaussian for center-surround RF (38), and Gabor
for V1 RF (20)], thus functioning as part of the wavelet repre-
sentation of the stimulus at a coarser scale. This suggests that
RFs of such simple properties might also exist in higher cortical
areas with larger RF sizes, such as V4 and IT.
As well as the RF properties described by the subunit structures,

V2 neurons are also likely to exhibit other nonlinear properties that
cannot be captured by the simple feedforward model, such as

discrimination of border ownership (9), which may also rely on
feedback signals from higher cortical areas.
To locate the V2 stripes, we used optical imaging of intrinsic

signal in vivo. Further postmortem identification with CO
staining was not performed because the monkeys are still alive.
The colocalization of CO thin stripes and color domains of in-
trinsic signal was previously verified by CO staining (30), whereas
other evidence from intrinsic signals suggests that direction do-
mains fall within thick stripes (31). Based on these previous
findings, our determination of thin stripes is likely to be accurate,
but that of thick stripes may be an underestimate. Strictly
speaking, our results reflect the preferential localization of cells
with respect to functional stripes defined by intrinsic imaging
rather than anatomical (CO) staining. Furthermore, the finding
that different RFs are preferentially distributed in different
stripes fits the idea that thin and pale stripes in V2 are part of the
ventral pathway important for form processing and object rec-
ognition (39–45).
As exemplified by the findings in the early visual pathway, neu-

rons in the retina and LGN mostly have RFs with center-surround
ON/OFF regions (46), and V1 cells could integrate linearly aligned
RFs of adjacent LGN neurons to form RFs with alternating on/off
regions with a preferred orientation (47). Thus, characterization of
the spatial structure of RFs in higher cortical areas will allow us to
understand how input signals become integrated progressively
through multiple stages to eventually achieve visual functions such
as object recognition. Because the feedforward input of V2 origi-
nates primarily from V1 (48–51), we could infer the rule of the
convergence from V1 to V2 cells from the RF properties of V2
cells. The finding that V2 RF subunits could be well fitted by the
summation of multiple Gabor functions (Fig. S2) supports a simple
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convergence model (Fig. 5), in which each V2 neuron receives
convergent inputs from several V1 cells with similar or different
orientations, allowing V2 neurons to detect elongated edges, cor-
ners, and complex textures in natural scenes.

Materials and Methods
Surgical Preparation. Three adult male macaque monkeys (Macaca mulatta)
were used for this study. All procedures were in accordance with National
Institutes of Health guidelines and approved by the Institutional Animal
Care and Use Committee of Shanghai Institutes for Biological Sciences,
Chinese Academy of Sciences. Surgery for chronic chamber installation (at
lunate sulcus, ∼16 mm anterior to occipital bone ridge and ∼13 mm lateral
from midline) were performed using standard sterile techniques under deep
anesthesia maintained by artificial respiration of isoflurane (1–2.5%). For
combined electrical and optical recording in monkeys B and C, we implanted
transparent electrode-penetrable silicone “artificial dura” (inner diameter,
18 mm; Fig. 4A) (52, 53), which protected and stabilized the cortex and
prevented dura regrowth for a period up to 3–4 months.

Electrophysiological Recording. Single-unit recordings were made in both V1
and V2 of four hemispheres in three awake monkeys using glass-coated
tungsten electrodes while the monkeys were doing a fixation task for a juice
reward. Eye position was monitored with a remote infrared eye tracker
(EYELINK II; sampling rate, 500 Hz; SR Research). Data recorded when the eye
position was outside of an elliptical window (size: vertical 1.2°, horizontal 1°)
were excluded. All single units presented with >12,000 images during fixa-
tion were included in the analysis (124 V1 and 360 V2 cells). The eccentricity
of RFs ranges from 1° to 8°. Single units were isolated using cluster analysis
of spike waveforms (Offline Sorter; Plexon) and confirmed by the refractory
period in the histogram of interspike intervals.

Visual stimuli were generated with a windows-based PC, presented on a
gamma-calibrated CRT monitor (Sony Multiscan G520; 30 × 40 cm, refresh
rate, 100 Hz; maximum luminance, 80 cd/m2). Classical RF of each neuron
was estimated using a drifting sinusoidal grating, with its spatial and tem-
poral frequencies chosen to effectively drive the cell. Natural images (16 × 16
or 32 × 32 pixels) sampled randomly from the database of digitized movies
(19) were displayed at a frame rate of 20 Hz. The mean luminance and
global contrast were normalized for all selected images.

Cell Localization. For monkey A, the identification of V1 and V2 areas was based
on their retinotopic maps, and cells close to the V1/V2 border (with RF near the
middle line of visual field) were excluded. The recordings frommonkeys B and C
were guided by optical imaging of intrinsic signals, and the precise location of the
recording sitewas determinedby injecting a small amount of dye (fast green) into
theguide tubeafter each recording tomark theelectrode locationon theartificial
dura. The mark was registered to the stripes identified from intrinsic imaging
map, based on prominent blood vessel branch points.

Data Partitioning. The recorded responses of each cell were randomly par-
titioned into training data (80%, for determining RF model) and test data
(20%, for evaluating RF model obtained). Training data were further par-
titioned into four segments with alternating 3/4 for computing model pa-
rameters and 1/4 as validation data to determine the final RF model from
multiple models derived by PPR (see below).

Linear–Nonlinear Model. The linear–nonlinear model (14, 15, 54) used to
represent the RF is

R=
Xn

i=1

fiðS · FiÞ [1]

where R represents the stimulus-evoked firing rate of the neuron, S is the
stimulus, represented by the luminance of pixels, Fi is the spatial filter of the
ith subunit (with same dimension as S), and fi represents the static nonlinear
function fi(xi) = ai + bi xi + ci xi

2, with a, b, and c as free parameters. The
parameters of the model for each cell were determined by the following
least square optimization (17)

min
X

ðr −RÞ2 + λgðFÞ, [2]

where r is the measured neuronal response, and R is the response predicted
by the model (Eq. 1). To avoid overfitting, the second term was used to penalize
the nonsmoothness of the spatial filter F, as measured by g(F) as follows:

gðFÞ=
X

i

��∇2Fi
��2, [3]

where ∇2 represents a 3 × 3 Laplacian operator, and λ is a scalar parameter.

PPR. The PPR method (16–18) used two steps to determine the RF model. In
the forward step, it searched for one subunit at a time. The search started
with a random filter as the first subunit by fitting the output of the subunit
to the recorded response using gradient descent. Following identification of
each subunit, it searched for the next subunit by fitting the residual neural re-
sponses (measured responses minus the output of all existing subunits). When
the number of subunit reached the designated N (20 used in this study), the
forward step was terminated. In the backward step, PPR simplified and refined
the RF model. First, the subunits were sorted by their contribution to the model
evaluated by their output variance. The subunits were then eliminated one at a
time (starting by the one with least contribution), and the remaining subunits
were refined after each elimination by fitting them with the residual neuronal
response. The backward step was terminated when only one subunit was left.
For each PPR computation we obtained N − 1 models from the backward step,
with each model having 1 to N − 1 subunits. For each cell, we computed PPR at
various λ values and two different time delays. Each model was then evaluated
by CC between predicted and measured responses of 20 segments of validation
data (random segmented with equal length). The final model was chosen as the
one with the highest average CC, among models with the least number of
subunits and CCs not significantly lower than the model with highest CCs of all
models (P > 0.01, Wilcoxon signed-rank test).

Quantitative Analysis of RF Structures. Before the analysis of the spatial RF
structure, the final model for each cell was evaluated by CC between the
predicted and measured responses of test data. The models with CC < 0.1
were excluded from the analysis. Further characterization of the RF subunits
was done by evaluating the least square fit of all of the spatial filters of
excitatory subunits with the following functions: DOG (38), 2DGabor, and
sum of two 2D Gabors. The goodness-of-fit for DOG fitting was calculated as
jjFjj2/(jjDOG − Fjj2) within the RF region (radius = 4 SD of the fitted DOG
function), where F is the spatial RF of the cell.

Comparison of PPR Method with Other Methods. We compared the perfor-
mance of PPR method with other computational methods in characterizing V2
RFs. Our initial attempt of using maximally informative dimension (MID) method
(55) yielded unsatisfactory results for RFs with multiple subunits, although its
performance was good for those with a single subunit. We then turned to the
modified spike-triggered average or spike-triggered covariance (mSTA/STC)
method for comparison with PPR. The mSTA/STC analysis for natural stimuli have
been described previously (21, 56–58). For comparison, we constructed the RF
models by mSTA/STC with the same number of subunits as those from PPR for
each cell. First, the filters were computed at various parameters of regularization
α and two different time delays using mSTA/STC. To evaluate the importance of
each filter, single-subunit models were constructed from these filters (the sec-
ond-order polynomial function was estimated for each filter using training data).
Then, for each α and time delay of a cell, we selected the best n filters, whose
single-subunit model predicted better than others, to construct an n-subunit
model, with n equal to the number of subunits of RF model resulting from PPR.
The nonlinear functions were estimated again for the n-subunit model by linear
regression on training data. Finally, the model for each cell was chosen as the
one with the best prediction of validation data.

Optical Imaging. The standard method (59) of optical imaging of intrinsic
signals for anesthetized animal was performed on three hemispheres of two

V2 RFConvergeV1 RF V2 RFV1 RF Converge

A B

Fig. 5. A convergence model for V2 RFs. (A) The model for V2 cells with
ultralong RF subunits. Red and blue ellipse, on and off subregions. An ultra-
long cell may receive convergent projections from multiple V1 cells aligned
along their preferred orientation. (B) The model for V2 cells with complex-
shaped RF subunits. The cells may receive convergent inputs from V1 cells with
different orientations at same or different center locations.
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monkeys (B and C) in an 20 × 16.5- or 17 × 14-mm area of the cortex, with
654 × 540-pixel resolution. Visual stimuli were repeated for 30–50 blocks,
and each block contained several sets of stimulus conditions (e.g., gratings
with different orientations) and a blank screen of the same mean luminance
(8 cd/m2, 8 s). Visual stimuli for optical imaging were created with ViSaGe
(Cambridge Research Systems) and presented on a gamma-corrected CRT
monitor (SONY CPD-G520). Full screen drifting gratings (spatial frequency,
1.5 cycle/°; temporal frequency, 8 Hz) were presented in a randomly in-
terleaved manner in eight directions (0°, 45°,...315°) to obtain orientation
and ocular dominance maps. Electromechanical shutters were used for
monocular stimulation to measure ocular dominance maps. To obtain a
color preference map, the stimuli comprised of red-green isoluminance sine-
wave gratings and 100% contrast black-and-white gratings were presented
in one of two orientations (45°, 135°) at random directions. Red Commision
Internationale de L’Eclairage (CIE) values were 0.552 and 0.299; green CIE
values were 0.268 and 0.530. The black-white gratings were set to have the
same spatial frequency, temporal frequency, and average screen luminance
as red-green gratings. Moving random white dots (0.04°) drifted at 8°/s in

one of eight directions (0°, 45°,...315°) with a density of 10% of the monitor
area were used to obtain direction maps.

For each stimulus condition, we first obtained single-condition maps,
which represent percent changes in intrinsic signals relative to the prestimulus
baseline as dR/R = (Ri − R1–3)/R1–3, where R1–3 is the average raw reflectance value
of frames 1–3 (taken before stimulus onset and representative of the baseline
activity), and Ri represents a single frame between frame 8 and 16. Then, these
single-condition maps were used for calculating support vector machine (SVM)
maps (60) (Fig. 3B and Fig. S5 C–F), which have higher signal-to-noise ratio than
traditional subtraction maps. These SVM maps were band-pass filtered and
normalized for determining the V2 stripe borders, defined as the contours of the
cross-points between color/orientation and orientation/direction maps (Fig. S5G).
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Gabors (40% of original). Arrows, example responses to the above stimuli, which was showed overlapping with RF contours. Note that all stimuli contained
long edges aligned with the RF. (B) CCs between measured and predicted responses (of test dataset) by original RF subunits (computed from PPR), Gabor fits of
the subunits, and progressively shortened Gabor. (C) Summary of analysis in B for all cells with AR > 2 (n = 16) by comparing the CC change with the best Gabor
fits. The CC decrease is significant by shortening to 60% and 40%.
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Fig. S4. Performance of RF models with complex-shaped subunits. (A–D) Prediction of responses before and after removal of subunits from cells with complex-
shaped RF. (A and B) The example stimuli contained image features matched to one of the three subunits in the example V2 cell. Arrows, example responses to
the above stimuli, which was showed overlapping with RF contours. (C) Three subunits of an example V2 cell are marked 1–3. Removal of the subunits reduced
the CCs between measured (test data) and predicted responses. (D) Removal of one (n = 24) or two (n = 9) high DCI subunits from all high DCI cells (DCI > 30).
(E and F) Prediction of responses before and after removing components of complex-shaped subunits. Removal of an oriented component from one subunit or
from all subunits reduced the CCs between measured and predicted responses for an example cell (E) and all high DCI cells (F) (from one subunit, n1 = 48; from
all subunits, nall = 30).
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Fig. S5. Identification of expected stripes in V2 from functional maps obtained by optical imaging of intrinsic signals. (A) Bright-field image of the cortex
through the implanted window. (B) Green light image of the visual cortex showing the pattern of blood vessels. A, anterior; M, medial; L.S., lunate sulcus. (C) Ocular
dominance map, which is clear in V1 but not in V2. (D) Color map shows the blobs in V1 and color preference domains within thin stripes of V2. (E) Orientation map
showing orientation-selective domains in both V1 and V2. In V2, these domains are found in thick and pale stripes, complementary to the color preference domains.
(F) Motion direction map, indicating direction-selective domains in thick stripes of V2. (Scale bar, 2 mm for B–F.) (G) Band-pass filtered color, orientation, and direction
maps overlaid with blood vessels in V2. (Bottom) Three overlaid maps, together with estimated stripe borders (Materials and Methods).
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Fig. S6. Percentage of center-surround cells in different stripes. Most of these cells were located in thin stripes. Error bar, SEM (n = 3 hemispheres). Cells were
defined as center-surround simple cell by two criteria: (i) containing only one subunit with half-wave-rectified nonlinear function; and (ii) the goodness-of-fit >
4 by fitting the RF with DOG function (Materials and Methods).
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