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Rasch MJ, Chen M, Wu S, Lu HD, Roe AW. Quantitative inference
of population response properties across eccentricity from motion-in-
duced maps in macaque V1. J Neurophysiol 109: 1233–1249, 2013. First
published November 28, 2012; doi:10.1152/jn.00673.2012.—Interpret-
ing population responses in the primary visual cortex (V1) remains a
challenge especially with the advent of techniques measuring activa-
tions of large cortical areas simultaneously with high precision. For
successful interpretation, a quantitatively precise model prediction is
of great importance. In this study, we investigate how accurate a
spatiotemporal filter (STF) model predicts average response profiles
to coherently drifting random dot motion obtained by optical imaging
of intrinsic signals in V1 of anesthetized macaques. We establish that
orientation difference maps, obtained by subtracting orthogonal axis-
of-motion, invert with increasing drift speeds, consistent with the
motion streak effect. Consistent with perception, the speed at which
the map inverts (the critical speed) depends on cortical eccentricity
and systematically increases from foveal to parafoveal. We report that
critical speeds and response maps to drifting motion are excellently
reproduced by the STF model. Our study thus suggests that the STF
model is quantitatively accurate enough to be used as a first model of
choice for interpreting responses obtained with intrinsic imaging
methods in V1. We show further that this good quantitative corre-
spondence opens the possibility to infer otherwise not easily accessi-
ble population receptive field properties from responses to complex
stimuli, such as drifting random dot motions.

critical speed of inversion; receptive fields; motion response; optical
imaging; primary visual cortex; spatiotemporal filtering model; ec-
centricity

MUCH OF OUR UNDERSTANDING about the function of primary
visual cortex (V1) is centered on the concept of a receptive
field (RF). Neurons of V1 have been classically described by a
spatiotemporal filter (STF) model (Hubel and Wiesel 1962;
Movshon et al. 1978; Adelson and Bergen 1985, Mante and
Carandini 2005; Baker and Issa 2005). In this model, the shape
of the filter can be identified as the RF of a neuron. The model
assumes that the mean firing rate of a single (complex) neuron
can be described as proportional to (the square of) a filtered
version of the luminance information falling into its RF (the
luminance “energy”).

While this simple view has been challenged by the notion
that the known anatomical complexity of V1 (such as diverse
lateral and intercortical connections) might give rise to a
multitude of extra-classical field properties in single neuron
recordings (e.g., see Angelucci and Bressloff 2006), it is

nevertheless commonly believed that the model at least ap-
proximately describes the time-averaged population responses
as accessible with intrinsic optical imaging or functional MRI-
related methods. For instance, recent studies investigating
population responses using optical imaging showed that the
STF model qualitatively captures the average population re-
sponses in the primary visual area in ferrets and cats (Baker
and Issa 2005; Basole et al. 2003; Mante and Carandini 2005;
Zhang et al. 2007). However, since neither study directly
compared model predictions with experimentally obtained data
for multiple cortical sites and across orientation domains, it is
still unclear (especially in macaques) to what degree the STF
model indeed predicts average population responses in a quan-
titative manner. Such examination is needed to establish the
generality of the STF model across cortical sites and across
functional domains.

If the STF model would predict the population responses
measured with optical imaging techniques in a quantitative
sense for relatively simple stimuli, it could be used as a general
“null hypothesis model” for contrasting observed responses to
very complex stimuli. For instance, the STF model might be
too simplistic to predict responses to some illusory patterns,
but unknown nonlinear contributions in the observed activa-
tions are difficult to dissect from the “trivial” response without
a quantitative model for the latter at hand.

Furthermore, if the STF model was even numerically accu-
rate for intermediate complex stimulus conditions, it could also
be applied to infer RF properties using these stimulus condi-
tions, such as motion-induced activations of random dot pat-
terns or noise patterns having naturalistic frequency spectrum.
Constraining the model to fit such optical imaging measure-
ments would yield estimates of RF properties of the underlying
neural populations (because RF variables are parameters of the
model) that might be otherwise not easily accessible. This
approach would be particularly effective if the model predic-
tion can still be calculated with analytical formulas. Impor-
tantly, this approach would estimate population RF parameters
without relying on presenting artificial grating stimuli that
might drive the visual system into a nonnatural regime.

In this study, we make a first step towards establishing the
accurateness of the STF model under a set of motion stimulus
conditions in monkeys to open the way for a wider application
of the STF model to imaging data.

Here we investigate a case of motion-induced activation in
V1 in macaque monkeys. We present coherently drifting ran-
dom-positioned luminance dots while recording neural re-
sponses using intrinsic optical imaging. We establish that
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motion-induced orientation maps can be observed in V1 of
macaques. This motion-induced neural activation is caused by
so-called “motion streaks” or “speed lines” (Geisler 1999; Burr
and Ross 2002; Geisler et al. 2001) referring to a perceived line
in the direction of the movement if, e.g., a small light point
moves very fast across the visual field. This phenomenon is
commonly experienced when observing fireworks and is
smartly exploited by comic strip artists to indicate rapid move-
ments. We further show that when changing the velocity of the
drift of the random dot pattern, the peak activation abruptly
shifts from perpendicular to parallel to the movement direction,
so that observed orientation maps “invert” at a critical speed,
consistent with the motion streak effect and predicted by earlier
theoretical studies (Mante and Carandini 2005; Baker and Issa
2005). Careful measurements reveal that the critical speed
changes gradually with cortical position forming a “critical
speed map” in V1.

To test the accurateness of the STF model using this motion
streak paradigm, we derive formulas for the predicted response
profiles to moving random dots as well as for the critical speed
and compared predictions with observations. Taking into con-
sideration the known variability between animals, we found
that critical speeds and response profiles across orientation
domains and eccentricities are surprisingly well predicted by
the STF model. These good model predictions suggest that the
STF model is well suited to quantitatively describe population
responses measured with hemodynamic signals in primary
visual cortex and should thus serve as a first model of choice
to interpret activations to complex stimuli. We further show
that the STF model can be successfully used to infer population
RF properties from the response profiles to motion-induced
random dots.

Some of the experimental observations have previously been
reported in abstract form (Lu et al. 2007).

MATERIALS AND METHODS

Experimental Methods

Recording setup. For a detailed description of the recording setup
see Roe and Ts’o (1995), Lu and Roe (2007), and Lu et al. (2010).
Briefly, data were collected from six macaque monkeys (abbreviated
with M1–M6; M1, M2, M6: Macaca mulatta; M3–M5: Macaca
fascicularis) in anesthetized and paralyzed conditions. All procedures
were in accordance with the U.S. National Institutes of Health Guide-
lines and were approved by the Institutional Animal Care and Use
Committees (Institute of Neuroscience, Chinese Academy of Sci-
ences; Vanderbilt University). Monkeys were anesthetized (thiopental
sodium, 1-2 mg·kg�1·h�1 iv and isoflurane, 0.2–1.5%), paralyzed
with vecuronium bromide (0.05 mg·kg�1·h�1 iv), and artificially
ventilated. Anesthetic depth was assessed continuously via implanted
wire electroencephalographic electrodes, end-tidal CO2, oximetry,
and heart rate. A craniotomy and durotomy were performed to expose
visual areas V1 and V2 (near the lunate sulcus). In monkeys M2 and
M3, a chronic chamber (diameter 22 mm) was implanted. In monkeys
M1 and M4–M6, data were collected before the chamber implant. In
chamber imaging experiments, an artificial dura (Chen et al. 2002)
was used to protect the cortex and also help with cortical stabilization.
Eyes were dilated (atropine sulfate) and fit with contact lenses of
appropriate curvature to focus on a computer screen 57 cm from the
eyes. Eyes were plotted using a rapid retinotopic imaging method (Lu
et al. 2009). The brain was stabilized with agar, and images were
obtained through a cover glass. Images of reflectance change (intrinsic
hemodynamic signals) corresponding to local cortical activity were

acquired with 632-nm illumination. Frame size was 504 � 504 pixels
and represented a square of 10–20 mm depending on the monkey and
on the imaging lens used. All stimuli were presented in a randomly
interleaved fashion and were presented in blocks. Each block con-
tained sets of stimuli consisting of either full-field gratings of different
drifting directions with optimized spatial (SFs) and temporal frequen-
cies (TFs; see Lu and Roe 2007) or four random dot patterns (drifting
in one of four directions: 0, 90, 180, and 270) and a blank. Visual
stimuli were created using ViSaGe (Cambridge Research Systems,
Rochester, UK) and presented on a gamma corrected CRT monitor
(SONY GDM F500R or CPD-G520). Mean luminance for all stimuli,
including the blank stimulus, was kept at 30 cd/m2. Random dot
patterns consisted of white dots (2 � 2 pixels, corresponding to a side
length of 0.128° for M1 and 0.116° for M3–M5), presented at a
density that covered 3% of the monitor area (4% in M1), and drifted
at various speeds (as described below). Each stimulus was presented for
3.5 s after a 0.5-s blank screen, during which 16 consecutive frames were
imaged. Interstimulus interval for all stimuli was at least 8 s. After
recording, data were processed by custom written MATLAB scripts
(Version R2011a; MathWorks, Natick, MA).

Data analysis. We performed three types of experiments as de-
scribed in RESULTS. In experiment 1, random dots stimuli drifting with
six different speeds (1, 2, 4, 8, 16, and 32°/s) were presented to
monkey M1 (35 trials). After recording, raw signals were averaged and
neural signals were obtained by subtracting the mean of time frames
1 and 2 from 14 to 16. To reduce the blood vessel noise, signals were
normalized by the power of the second Fourier component along the
time frames (after averaging over all conditions). This normalization
reduced artifacts and resulted in (visually) superior orientation maps
than for more conventional methods. Subsequently, signals were
filtered using a (2D) Butterworth filter (high-pass, 0.4 cycles/mm,
order 4; and low-pass, 5 cycles/mm, order 1). In analogous manner, an
orientation map was generated based on a separate run using gratings
(10 trials, 4 orientations). Blood vessels and noncortical regions were
excluded by thresholding the described normalization term and the
trial-to-trial variance (thresholds adjusted manually). Additionally,
not robustly activated pixels during the orientation map recordings
were excluded (t-test allowing for different variances, threshold set
manually).

To generate difference maps of the axis-of-motion, trials from the
two opposing directions were averaged and orthogonal directions
were subtracted. Since the spatial luminance distribution of the ran-
dom dot pattern was isotropic, the differential activation of the
orientation domains could only be caused by the drifting motion.
Average response profiles were obtained by sorting each pixel of a
region of interest (ROI) into one of 25 bins according to the orienta-
tions established by the reference orientation map and averaged. Error
bars report the SE, corrected for the correlation induced by the
low-pass filtering. For the low-pass used here, the expected correla-
tion is four pixels. Thus we divided the number of averaged pixels in
the SE calculation by 42�.

In experiment 2, three monkeys (M3–M5) were presented with
random dot stimuli with 31–41 densely spaced drifting speeds in the
interval 2 to 10°/s (2 to 8 in M4). Each stimulus was repeated two to
eight times, and the direction of coherent dot motion (4 directions)
was randomized (in monkey M5, also speeds were randomized over
the whole experimental time). To minimize any potential chamber
shift during the long experiments, frames were realigned in respect to
the orientation map by maximizing the correlation of the central part.
The orientation map was obtained in a separate run (8 full-field
grating orientations). Raw data were processed on a single trial basis,
since response profiles could be obtained reliably even for single
trials. Here, neural signals were extracted by directly using the
negative logarithm of the power of the second Fourier component
along the recorded time frames yielding superior artifact reduction on
single trial basis than traditional methods. Average response profiles
were obtained as above (except using low pass of 8.33 cycles/mm).
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The critical speed was estimated by first re-binning the difference
activation maps using two bins (centered at 0 or 90°, respectively).
After all values falling in either of the bins were collected, t-test
statistics allowing for different sample variances were computed for
all speeds. Zero crossing of the t-values indicated the critical speed
(linearly fitted in the range of 2 to 6°/s). The confidence interval (CI)
of the critical speed was based on the 95% CI of the linear fit.

In experiment 3, the goal was to estimate RF parameters with
traditional spatiotemporal gratings. Two monkeys (M2 and M6) were
shown 25 gratings (1 orientation; 20 trials) of various SFs (0.3, 0.6,
1.2, 2.4, and 4.8 cycles/°) and TFs (1, 2, 4, 8, and 16 Hz and 0.25,
0.75, 2.25, 6.75, and 20.25 Hz, respectively). Additionally in a third
monkey (M4), six gratings were shown (SF: 0.3, 0.6, 1.2, 2.4, 4.8, 9.6
cycles/°; TF: 8 Hz). All data were processed as in experiment 2.
Response profiles were constructed by averaging the activation ac-
cording to a reference orientation maps (single condition map, blank
subtracted). Orientation maps were recorded in separate runs (4
orientations). Fitting was achieved by minimizing the mismatch of the
STF model responses (see APPENDIX) and the measured responses
(direct simplex method with random initial conditions). Pearson
correlation over all 50 (concatenated) response profiles simultane-
ously was used as goodness-of-fit measure. Minimal responses were
set to zero to adjust offsets from the baseline, and the symmetrical
profiles were averaged to half-profiles before the fit. To ensure
physiological reasonable RFs, we enforced physiological bounds on
the RF parameters (SF and TF preferences 0.1–20 cycles/°, band
widths from 0.1 to 10 octaves, and aspect ratio from 1 to 2; see
APPENDIX for definitions of the parameters). Convergence was robust,
and the best match was usually obtained for most of the randomly
chosen initial conditions.

STF Model

The orientation response to a spatially isotropic but constantly and
coherently moving random dot pattern can be understood when
modeling the average activity of neurons in the primary visual cortex
by a STF mechanism (Baker and Issa 2005; Geisler 1999; Mante and
Carandini 2005). Explaining the V1 responses by a filter mechanism
is the classical approach to V1 and has been suggested decades ago
(Adelson and Bergen 1985; Hubel and Wiesel 1962; Movshon et al.
1978; Watson and Ahumada 1985). We call this model the STF
model. In the APPENDIX, we use such a filtering model based on the
classical assumptions of Gabor RFs (Jones and Palmer 1987) and the
energy mechanism in complex cells (Adelson and Bergen 1985) to
derive analytic equations for calculation of the expected critical speed
and for the predicted neural responses to random dot stimuli as used
in the experiments.

The STF model is a feed-forward input-driven model of average
responses in the early visual cortex. We derive the model in mathe-
matical detail in the APPENDIX. Briefly, neural responses are treated as
proportional to a filtered version of a given spatiotemporal input
stream (i.e., temporally changing luminance intensities in the visual
field). Each neural site thus implements a STF that we think of as the
RF of a small population of neurons (and subsequently call it an RF
filter or simply RF). This filter is tuned to features in the input stream,
namely orientation, TF, SF, and visual field position. Since we are
interested in the average response and the moving random dot stim-
ulus is (on average) identical for each visual position, all potential
visual field positions or temporal offsets can be averaged, so that only
one mean response value remains for each orientation domain, cortical
region, and stimulus presentation.

Using this STF model, we derive formulas to predict the critical
speed of inversion for drifting random dots and white noise stimuli
(see Eqs. 1 and 2).

RESULTS

We investigate motion-induced activation in V1 across sev-
eral degree eccentricity in macaque monkeys and evaluated the
accurateness of the STF model prediction. We presented co-
herently drifting, randomly positioned luminance dots while
recording neural responses using intrinsic optical imaging.

Altogether six macaque monkeys (M1–M6) participated in
the experiments in an anesthetized condition.

Orientation Maps Invert for Increasing Drifting Speeds in
Macaque

We first established whether motion-induced orientation
maps can be observed in V1 of macaques and investigated how
different velocities affect these maps. Figure 1B illustrates the
characteristic pattern of orientation domains obtained in ma-
caque V1 in response to oriented drifting gratings (monkey M1,
approximate V1 region of interest indicated); we refer to this
map as the reference orientation map. We then presented
stimuli composed of randomly positioned luminance dots drift-
ing in one of four directions (up, down, left, or, right) and at
one of six drift speeds. To obtain motion-induced orientation
maps, imaged trials were averaged, oppositely drifting direc-
tions summed, and orthogonal motion axes subtracted (illus-
trated in Fig. 1C). These axis-of-motion maps obtained at drift
speeds of 1, 2, 4, 8, 16, and 32°/s are shown in Fig. 1D.

These maps reveal clear differential activation to orthogonal
motion axes. As shown in Fig. 1E (2 enlarged ROI in V1: blue
and orange), the whole V1 region spanning several degrees
eccentricities exhibits regular arrays of axis-of-motion domains
similar to the orientation domains obtained with drifting grat-
ings. To quantify the axis-of-motion response, for each map,
we averaged the activation of all pixels with matching orien-
tation preference (defined by the reference orientation map). In
detail, after computing a preferred orientation for each pixel
according to the relative responses to the four grating orienta-
tions (i.e., calculating the circular mean for each pixel), we
binned these orientation preferences into 25 bins from 0 to
180° and determined the orientation bin each pixel belonged to.
We then averaged all corresponding pixel locations in the
axis-of-motion map belonging to the same orientation bin in
the reference map. This resulted in the axis-of-motion differ-
ence response profiles shown in Fig. 1F (blue curve; averaged
over the whole V1 ROI). Similar to previous profiles obtained
for grating-derived orientation maps (e.g., Lu et al. 2010),
profiles peak at a particular orientation and gradually fall off
for intermediate orientations, illustrating the differential acti-
vation by orthogonal drift axes.

Importantly, in agreement with the motion streak effect,
maps were observed to invert when drift speeds increased from
low to high. As seen in Fig. 1F, profiles peaked at zero degree
for speeds up to �4°/s and inverted (to 90°) for speeds �8°/s.
We refer to the speed at which the orientation map inverts, as
the critical speed. The inversion was evident not only in pixel
averages across the imaged cortex but also on a pixel-by-pixel
basis. This can be observed by examining individual domains
outlined in the difference maps in Fig. 1E (arrows). For
increasing drifting speeds, individual pixels inverted in con-
trast, reflecting a change in the axis-of-motion response pref-
erence. In addition, the magnitudes of response preference
changed with drift speed. In this example, drift speed at 16°/s
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produced the strongest maps. Thus each drift speed produced a
characteristic difference profile (Fig. 1F).

Determining the Critical Speed of Inversion at Different
Eccentricities

Having established that orientation maps invert with speed,
we aimed to determine the value of the critical speed more
accurately and to examine whether this speed changes with
eccentricity. To more accurately estimate the critical speed, in
three macaques (M3–M5), drift speeds of random dot patterns
were varied in finer steps (31–41 different speeds) in the range
of 2 to 10°/s. We then conducted retinotopic mapping of the
imaged region using concentric rings and bars of known
eccentricity and fitted activations with cortical magnification
functions to obtain pixel-based estimates of retinotopic eccen-
tricity (see Fig. 2).

We then determined inversion speeds in the following manner,
illustrated for monkey M3 in Fig. 3. After obtaining the reference
orientation map (Fig. 3C), we obtained axis-of-motion maps and,
for each speed, difference response profiles as before. Observed
difference response profiles for monkey M3 are shown color-
coded in Fig. 3A (for this example, the ROI is indicated in Fig. 3C:
V1 responses were pooled for pixels between 2 and 3° eccentricity
only). As in Fig. 1, response profiles showed an inversion for

increasing speed; however, because of the fine spacing between
tested speeds, the critical speed could be estimated with greater
precision. Figure 3B illustrates the estimate of inversion speed.
We used t-values allowing for dissimilar variances to compare
whether the activation of the horizontal and vertical axis-of-
motion domains differ (see Fig. 3B and MATERIALS AND METHODS

for details). T-values are plotted in Fig. 3B for multiple drifting
speeds. Since the difference activation to horizontal and vertical
motion will change sign when the profiles inverts, we estimated
the critical speed at the zero crossing of a linear fit (line in Fig.
3B). The estimated critical speeds in V1 for each monkey and
different eccentricities are summarized in Fig. 4A. Critical speeds
fell between 2–5°/s depending on the monkey and eccentricity. In
V1 (in the range of 2–3° eccentricity) of monkeys M3 and M5, the
critical speed was 4.12°/s (CI: 4.11···4.13°/s; CI calculation based
on the 95% CI of the linear fit) and 3.19°/s (2.7···3.4°/s), respec-
tively.

One monkey (M4) showed almost 2°/s lower critical speeds
than the other monkeys. In fact, its critical speed was too low
to be reliably estimated in the 2–3° eccentricity region in our
data (critical speeds for larger eccentricities could be esti-
mated, see Fig. 4A). In contrast to M4, all other monkeys
exhibited critical speeds consistently at �4°/s. This discrep-
ancy might be caused by an exceptional low preferred TF in
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Fig. 1. Optical imaging measurements in
response to coherently drifting dots in monkey
M1. A: blood vessel map of the exposed
visual cortex. B: reference orientation map
obtained with grating stimuli. C: stimulus used
in experiments. Opposite directions are pooled
to generate axis-of-motion difference map.
D: axis-of-motion difference maps to 6 drift-
ing speeds. Orientation domains are differ-
entially activated resulting in typical
patchy patterns across the cortex. E: magnified
regions as marked in D. Contour lines indi-
cate oblique orientation domains. Note that
pixels invert contrast for increasing speed
(for example, the region indicated by ar-
rows). F: averaged difference response
profiles [regions of interest (ROIs) indi-
cated in B]. Profiles are normalized by a
constant factor for better visualization.
Shaded areas mark SE. Note that neural
activation and optical signals are anticor-
related: orientation domains stronger acti-
vated by vertical motion (V) show positive
signals, domains that are stronger activated
by horizontal motion (H) show negative
signals (as indicated in the plots).
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monkey M4 and data from this monkey were therefore ex-
cluded from some of the further analysis of the critical speed
(see DISCUSSION).

To examine whether the critical speed changes with eccen-
tricity, we divided V1 into regions from lower to higher
eccentricity [in steps of 0.3–0.5° using rectangular boundaries
in the case of monkeys M3 and M5 (as indicated in Fig. 3D for
M3), and using nonrectangular regions based on a 2D eccen-
tricity map for M4] and calculated the critical speed on the
pooled responses within each region (Fig. 4A). Critical speeds
in the V1 subregions of individual monkeys were less variable
(within 1°/s) than between monkeys. Interestingly, for individ-
ual monkeys, the critical speed systematically increased with
greater visual field eccentricity [testing for linear trend, F �
207, 55, and 63 for M3–M5; P � 0.001. If (uniform) random
values from each CI are taken instead, 95% quantile of all P
values (1,000 repeats): 0.0003, 0.0418, and 0.0305]. In one
monkey (M3), data were sufficient to generate a critical speed
map over all measured cortical positions (Fig. 3D). Here,
critical speed was estimated on individual pixel basis by
calculating the trial-averaged difference activation between
horizontal and vertical directions of movement and identifying
the speed where the difference activation crossed zero (after

smoothing). This color-coded critical speed map illustrates the
gradual increase in critical speed from lateral (central) to
medial (peripheral) V1 and demonstrates the eccentricity de-
pendence of the motion streak effect.

According to the model equations (see APPENDIX), the predicted
response profiles to drifting dots and the critical speed depend
crucially on the RF properties of the underlying neural population.
The observed change of the critical speed with eccentricity is thus
likely a result of the change in the neural RF properties with
eccentricity. To directly measure the change of SF preference with
eccentricity, we showed gratings of fixed TF (8 Hz) but varying
SFs (0.3–9.6 cycles/°) in one monkey (M4) as a control experi-
ment. As expected, the SF preference decreased markedly from
�4.5 cycles/° (at 1.5° eccentricity) to 1.4 cycles/° (at 5.5° eccentric-
ity; see Fig. 4B black crosses). Note that the abrupt jump in the SF
preference estimation for eccentricities around 3.5° might be related
to limited amount of data in this control experiment.

Theoretical Calculation of the Critical Speed

The change of the peak response from parallel to perpendicular
orientation domains in the “motion streak” paradigm is qualita-
tively well understood by the STF model (see Fig. 5A; see
APPENDIX for mathematical derivations). If dot motion is slow, the
band-pass filter of the RF acts as a temporal high-pass filter and
edges of the dots (perpendicular to the movement direction, Fig.
5C) are the most striking feature activating perpendicular do-
mains; if the dot motion is fast, the band-pass acts as temporal
low-pass filter, integrating luminance along the path of movement
(Fig. 5D) and activating mostly parallel orientation domains
instead. Thus a change of the relative contribution of parallel and
perpendicular orientation domains is expected when increasing
the drifting speeds from slow to fast. The speed at which the
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Fig. 2. Determining retinotopic map in imaged field of view. To approximate
the eccentricity range of each pixel, in one monkey (M4), we showed
concentric circles. Since the circles had constant and known eccentricity, the
cortical positions of reference eccentricities could be inferred from the peak
activation in this experiment. A: difference image of concentric rings (1, 2, 3,
4, 5, and 6° vs. 0.5, 1.5, 2.5, 3.5, 4,5, and 5.5° radius). Activation is smoothed
and trial-averaged. B: peak activations yield eccentricity estimate (from the
vertical average of black box in A). Dashed lines: constant amplitude signal
from Hilbert transform. C: since the inverse cortical magnification factor
(CMF) is linearly related with eccentricity (Schwartz 1980; Tootell et al.
1988), the relation of eccentricity to cortical position can be very well fitted.
Peak positions fitted with E(x) � a/b{exp[b(x �c)] � 1}, (x: relative cortical
position), the equation reflecting linear relationship between inverse CMF and
eccentricity (E): CMF�1 � a � bE. The fit resulted in a � 6. 31 � 10�5 °/mm,
b � 0.08 mm�1, and c � 98 mm. The relation is here replotted in cortical
position as in A and B. Blue crosses are from data in A and B, red crosses from
an additional experiment with a different set of ring radii (1.2, 2, 2.8, 3.6, 4.4,
5.2, and 6° vs. 0.8, 1.6, 2.4, 3.2, 4, 4.8, and 5.6° radius). Reference position was
set to the cortical position at 2° (dashed-dotted line in C), where activation to
both sets of radii coincided. In all other experimental sessions, vertical and
horizontal bars of fixed positions were shown instead (cf. Lu et al. 2010; Fig.
1D). Cortical distance between activation to two bars near and parallel to the
V1/V2 border was used to estimate the absolute eccentricities in the imaged
field of view according to the fitted equation above. Since parallel bars do not
produce concentric cortical activations, we did not determine a full 2D
eccentricity map in monkeys other than M4. Instead, since we found from M4
that eccentricity is approximately constant perpendicular to the V1/V2 border
in a region within �5 mm cortex (as indicated in the rectangular area in A), we
only considered pixels nearer than 5 mm from the V1/V2 border in M3 and M5
when defining rectangular ROIs based on eccentricity (see RESULTS). Eccen-
tricity at the V1/V2 border should yield a good estimate throughout these small
regions. AU: arbitrary units.
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perpendicular domains respond with equal strength as the parallel
domains, we call the critical speed.

Intuitively, expected responses to drifting dot motion are
very accessible when seen in the frequency domain. The STF
model can be understood by imagining the RFs as localized
regions in frequency space that integrate the energy of the
stimulus falling into the volume of the RF (Baker and Issa
2005; Mante and Carandini 2005). As derived in the APPENDIX

and illustrated in Fig. 5E, the energy of a coherently drifting
luminance pattern is arranged on a tilted plane (and having an
approximate Gaussian shape on this plane in case of random
dots), where the tilt angle is directly related to the speed of
motion. If the drifting speed is low (small tilt angle), the tilted
plane will intersect mostly with the perpendicular domain (red
blobs in Fig. 5E), whereas if the speed is high the plane will
instead reach the parallel orientation domain (green blobs in
Fig. 5E) without intersecting the perpendicular domain signif-
icantly. Since the activation level is proportional to the amount
of energy in the intersection, the relative contribution of
perpendicular and parallel domains will thus change when
drifting speeds are varied. The drifting speed at which both
contributions are equal is the critical speed.

Our formulation of the STF model is fully characterized by
six parameters (see Fig. 6). Namely, the orientation, SF and TF
preferences and the three respective bandwidths, defining the
tuning widths to each of the three features. Assuming that at
the critical speed the activations to drifting random dots of
perpendicular and parallel orientation domains are equal, we
derived an approximate formula for the critical speed �RD. We
found that (see the APPENDIX for a derivation):

�RD � �� d�

d��
�

� '

�d�
�

d�d� � �d�
2�d�

2 	 log2� 	 �1 � � '2�log22

d�
2 � �1 � � '2�log2

(1)

The expression involves the parameters of the model, a param-
eter signifying the size of the dots (�) and uses the abbreviation
�= � �/(d��) (see APPENDIX for an explanation of the parameters).
Further theoretical analysis of Eq. 1 shows that the critical speed
crucially depends on the “preferred speed” of the neural popula-
tion. The preferred speed is defined as the ratio of the preferred TF
� to preferred SF � and is given in degress per second. In
particular, we found that Equation 1 reduces to the case of drifting
white noise luminance patterns if the size of the dots is small
enough (compared to the SF selectivity of the neural population).
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Fig. 3. Measuring the critical speed using drifting random dots of finely spaced
drifting speeds in monkey M3. A: average orientation difference profiles in
color code for V1. Difference responses are normalized to the sample SD
calculated on the whole data set. Note that the response peak shifts from 0 to
90° at 4.1°/s (V1). Dashed lines: estimated critical speed from B. V1 data were
pooled from regions of interest as indicated in C. B: normalized difference
between the average activation of horizontal and vertical domains (t-values);
crossing the zero line means inversion of the difference map and provides
critical speed (linear fit in the interval 2 to 6°/s). C: reference orientation map
obtained in a separate run using full-field gratings. Region of interest of A and
B is indicated by a rectangle. Data in V1 are only taken from pixels having
eccentricities between 2 and 3° as for the model prediction (Fig. 7). D: critical
speed map. Critical speed increases with eccentricity. Regions of interest used
in Fig. 4 (red triangles) are indicated (black rectangles).
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For a drifting white noise luminance pattern, the critical speed �w
can be approximately calculated as

�w � cw

�

�
(2)

where cw 	 1.5 is a proportionality constant depending only on
the bandwidth parameters (see APPENDIX for details). Thus in
general, if a neural population is selective for larger spatial
aspects (i.e., lower SF preference) or features shorter integra-
tion time constants (i.e., higher TF preferences) the critical
speed is predicted to increase.

Estimation of the Parameter of the Model

We chose to estimate the parameters of the STF model from
our own experimental data. Note that without knowledge of the
parameters the predicted speed cannot be obtained and model
and experiment not compared. To achieve an independent
estimate, we performed additional experiments using a differ-
ent set of stimuli. We recorded responses to grating stimuli in
two additional monkeys (M2 and M6). In these experiments,
optical recordings of V1 were made in response to moving
full-field gratings of various SFs and TFs (25 combinations,
see MATERIALS AND METHODS). Responses were trial averaged,
and single condition orientation profiles were computed (see
Fig. 7A, black curves). Because RF properties change with
eccentricity (Dow et al. 1981; Foster et al. 1985; Van Essen et
al. 1984), we pooled only cortical sites having eccentricity
between 2 and 3° to achieve comparability between monkeys
(the imaged regions overlapped across monkeys in this range).
Since model responses to moving gratings can be derived
mathematically (see APPENDIX), the theoretical equations of the
grating responses were fit to the combined data of both ma-
caques simultaneously (to yield suitable parameter across mon-
keys, see MATERIALS AND METHODS). Examples of the fitted
response profile are displayed in Fig. 7A (red lines) together
with the data (black lines). Note that orientation profiles are
reasonably well fitted (86% correlation; see Table 1 for the
resulting parameter values and individual error estimates).
Figure 7B shows the goodness-of-fit landscape for two model
parameters: preferred TF and preferred SF. The best fit of Fig.
7A is indicated (white circle) together with the error estimates
(white bars). CIs were determined by searching those values
along the axis of the parameter for which the error measure
(one minus Pearson correlation coefficient) increased to 5%
above its optimal value.

Estimated RF parameters are shown in Table 1. Spatial RF
properties could be accurately estimated and the results are in
accordance with spatial preferences reported for single units in
the literature (see APPENDIx for a brief review). For instance,
average preferred SFs of parafoveal recording sites in V1 were
reported at 2.2 to 3 cycles/° (De Valois et al. 1982a; Foster et
al. 1985), similar to our estimate of 3.28 cycles/°.

Comparison of Observation and Prediction

To test how the STF model prediction compares to the
experimentally measured profiles from drifting motion dots,
we used the estimated RF parameters of Table 1 and calculated
the expected response profiles for drifting random dots at the
same speeds used in the experiments (see APPENDIX for a
derivation of an analytic expression of the theoretical response
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critical speed measurement, activation in pixels falling into 0.3° (M3–M4) to
0.5° (M5) eccentricity wide ROIs were pooled (critical speed measurements
are plotted at the center eccentricity of their respective ROI). Exceptions are
data points at 2.5° eccentricity which are calculated on 1° eccentricity wide
ROIs (from 2°–3°). Confidence intervals (CI) are based on the 95% confidence
bounds of the linear regression of t-values (see Fig. 3B). Predicted speed values
are indicated with shaded areas and pentagrams. Gray shaded areas mark the
CI of the model predictions using the receptive field (RF) parameters from
Table 1. The prediction plotted at 2.5° is estimated on data from between 2° to
3° eccentricity. For the other two predictions (black pentagrams), the spatial
frequency (SF) preference was reestimated on 0.3° wide regions (using
responses to gratings in both monkeys M2 and M6) while other RF parameters
held constant (as in Table 1). Data from M3 and M5 correspond well with the
prediction. Note that the predicted rate of change of the critical speed with
eccentricity corresponds very well to the change of the observed critical speeds
in all 3 monkeys. Light green shaded areas are CIs of model prediction based
on SF preferences directly measured from monkey M4 using grating stimuli
(instead of M2 and M6 from Table 1; see black crosses in B). Temporal
frequency (TF) preference was set to 3.3 Hz, which yielded a high correlation
with the speed measurements in M4 (other RF parameters taken from Table 1).
In the predictions for M4, CIs were calculated without a CI for the TF
preference since it was set to a fixed value (resulting in relatively narrower
CIs). B: spatial frequency preference estimated with the spatiotemporal filter
(STF) model and data from A (for monkeys M3 and M5; M4 omitted, because
the temporal preference in this monkey did not correspond to the estimated
model parameters, see DISCUSSION) vs. CMF. Red line: inverse RF size relation
from (Dow et al. 1981).
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profiles to drifting dots). The predicted profiles for one monkey
(M3) are plotted in Fig. 7, C–E. We found that the STF model
predicted the average responses extraordinarily well (Pearson
correlation 88%). Their visual appearance was very similar to the
experimental recordings in Fig. 3A. Note that also the calculated
profiles for individual speeds (Fig. 7C) matched the shape of
experimental observations very well illustrating that responses
were accurately predicted across orientation domains.

The relative response amplitudes for different speeds were
well predicted [Fig. 7D; Pearson correlation 77% (CI:
60. . .87)] . For speeds �4°/s, amplitudes increased gradually
reaching maximal values at around 16°/s. For speeds below the
critical speed of �4°/s, there seemed to be a slight underesti-
mation of the amplitudes. This could be caused by a small
deviation of physiological RFs from Gabor shapes used in our
model (see DISCUSSION). Similarly, if one computes the circular
mean angle � of the difference profiles [restricted to the
interval from 0 to 90°, i.e., (a � 90°)/2] to access the angular

position of the peak response along the orientation axis, we
found that the peak position as function of velocity were well
captured by the model [Fig. 7E; Pearson correlation 87% (CI:
76. . .93)]. In particular, peak positions changed rapidly around
the critical speed at �4 °/s from 0 to 90° in both model and
experiment indicating the abrupt inversion of the difference
profile.

Having established that predicted response profiles were similar
in theory and experiment, our next goal was to establish a CI of
critical speeds based on the STF model and compare the predic-
tions across monkeys. Measurements of the critical speed should
fall in this CI if the STF model would be appropriate. We
calculated that, in the eccentricity range of 2 to 3° (where the
model parameters were fitted to), the predicted critical speed was
3.6°/s (CI: 3.0···4.4°/s; CI was estimated by conservatively com-
puting the critical speed when each parameter was changed to
either of its own confidence bound individually and taking the
“worst case” smallest and highest values). We found that with the
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exception of one monkey (M4; see DISCUSSION), the measured
critical speeds in V1 indeed fell within the confidence region of
the prediction when the eccentricity range of the measurements
was matched to that of the model parameter estimates (predicted
critical speed is marked with a black pentagram at 2.5° and the
confidence region is indicated as a gray area in Fig. 4A). Note that
although monkey M1 (from Fig. 1) showed a similar critical speed
of slightly �4°/s, this value is not directly comparable to that
reported in Fig. 4A because profiles were pooled over a larger
eccentricity region (in this experiment only approximately known
to come from within a range of �2–6°) and dot sizes were
somewhat larger than in monkeys M3–M5.

To test whether the observed changes in critical speed with
eccentricity in V1 are in accordance with the STF model, we
refitted the SF preferences in two ROIs in monkeys M2 and M6
when only taking a narrow range of eccentricities at the borders
of our initial ROI into account (1.9–2.2° and 2.8–3.1° eccen-
tricity, respectively), while leaving other RF parameters con-

stant (as in Table 1). We found that the predicted critical speed
based on these new model parameters changed with eccentric-
ity, in accordance with the measurements (see Fig. 4A, black
pentagrams). The predicted rate of change was 0.4 Hz ([°/s/°] �
[Hz]) (CI: 0.25···0.51 Hz, CI: based on 95% CI of the linear
regression), which was in good agreement with rates of change
observed in all monkeys [in Hz: M3: 0.6 (0.51···0.73), M4: 0.5
(0.25···0.76), M5: 0.4 (0.27···0.59)].

To further analyze changes with eccentricity, we computed
a prediction of the SF preference from the critical speed
measurements using the STF model. Specifically, we used the
equation for the theoretical responses and searched for the SF
preference, which would predict the observed critical speed
measurements when other parameters were held fixed (as in
Table 1). In Fig. 4B, resulting values are plotted vs. the cortical
magnification factor, which can be related to eccentricity
(Tootell et al. 1988). Although somewhat scattered (most likely
due to the interanimal variability), the predicted SF was in the
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correct range for two monkeys (M3 and M5) and clearly
increased with cortical magnification factor in a similar form as
published values of RF sizes (Dow et al. 1981; magenta line)
and direct measurements of the population SF preference using
full-field gratings (black crosses) suggest.

Inferring RF Properties Using the STF Model and Drifting
Dots

Our results indicate that the STF model is able to accurately
describe the average population response recorded with intrin-
sic optical imaging in V1 of macaques. Because of this good
quantitative agreement, we can use the STF model as a tool to
infer new information about the RF properties of the recorded
neural populations. In principle, fitting the model to the exper-
imental observations will yield estimates of all of the six model
parameters (see Fig. 6). In the following, we show that fitting
responses to random dot motion is particularly useful for

estimating the TF preference with high accuracy in case if the
SF preference is already known (for instance from a SF
gratings experiment).

Since the critical speed mainly depends on the ratio between
spatial and TF preference (see Eq. 2), this ratio is well acces-
sible using the motion streak paradigm. To infer RF parameters
from the motion response data, we therefore fitted responses to
drifting random dots stimuli with our derived theoretical re-
sponse equation and performed a search in the parameter space
of the model to find the best match between theory and
experimental orientation profiles. Since the bandwidth param-
eters seemed to be rather constant across monkeys, we fixed
these parameters to literature values 
� � 1. 7 and 
� � 3
octaves, and 
 � 1 (De Valois et al. 1982b; Foster et al. 1985).
With the bandwidth parameters fixed, only the SF and TF
preferences were left to vary. The SF and TF preference values
of the best match then can be regarded as an estimate of the RF
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properties of the recorded neural population. The resulting best
match to data from monkey M1 (Fig. 1) is plotted in Fig. 8A.
The predicted response profiles matched the experimental data
very well (95% correlation), despite the fact that the fit had
only two degrees of freedom. This good fit further corroborated
the quantitative usefulness of the STF model.

The goodness-of-fit landscape in two parameters, TF and SF
preferences, is shown in Fig. 8B. Parameters used for the fit in
Fig. 8A are indicated with a blue square. Confidence regions of
literature values and estimates from Table 1 are indicated with
gray and green ellipses, respectively, and overlap well with
high goodness-of-fit values, indicating that a fit to motion data
yields realistic estimates. Note that in the log-log plot of the
goodness-of-fit landscape, parameter combinations that ap-
proximately lie within a linear tube of slope 1 were all equally
suitable to fit the data, because these values have a constant
ratio of TF to SF preference (compare to Eq. 2). For high SFs
and TFs (or for larger dot sizes), the white noise approximation
(Eq. 2, dashed-dotted line) is not suitable because it is only
valid in the limit of small dots (see derivation in the APPENDIX).
The more accurate approximation in the case of random dots
(Eq. 1) is able to track the deviation (solid line).

From the resulting fit, one can estimate the ratio of the TF to
SF preference of the underlying neural population with great
accuracy. We found 3.67°/s (3.52···3.82°/s; CI was estimated
on a line orthogonal to the line of constant speed ratio). Note
that the relative error is �5%. This accuracy would be difficult
to obtain when using only data derived from gratings stimuli
instead of fitting the dot motion data. If one directly computes
the ratio from gratings experiments by dividing the estimates
for the preferred SF and TF one finds a ratio of 3.2°/s with a
much larger relative error deviation of 24% [added relative
errors of the SF (0.05) and TF (0.19) preferences from Table
1]. This larger relative error is mainly due to the difficulties in
estimating the TF preference from grating responses because of
the large temporal bandwidth of typical V1 neurons.

In contrast to the TF preference, the SF preference can be
accurately estimated using the traditional gratings paradigm,

since the SF bandwidth is relatively narrow (having a relative
error of 5%, see Table 1). Thus one can use the SF preference
from a gratings experiment together with the fit to motion
response data to yield a more accurate estimate of the TF
preference than obtainable from a traditional gratings design
alone. For instance, if we take the SF preference and the CI
interval from Table 1 as reference, we find from the fit to the
motion responses (Fig. 8A) that the TF preference in monkey
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Fig. 8. Estimating spatiotemporal RF parameters by using the drifting random
dot stimuli (“motion streak” paradigm) and the STF model equations. A: mean
response profiles measured in monkey M1 (black lines; same data as in Fig. 1)
fitted by the STF model for 6 speeds of motion (red curves). The (Pearson)
correlation between model fit and data is 95%. C and D: goodness-of-fit
landscapes. Blue square dot: parameters used in A (i.e., the best fitting TF
preference; SF preference as in Table 1). Blue ellipse shows the CIs of the TF
preference estimation using the “motion-streak” paradigm. RF parameter
estimates and CIs from the grating experiment (from Table 1) are plotted in
green (“Pop. RF”). Both confidence ranges are here calculated as the region
where the goodness-of-fit value (Pearson correlation) remains �90% of that of
the best match. Literature RF parameter from electrophysiological recordings
in single neurons are plotted in gray [“Single RF”; SF from Foster et al. (1985)
and TF from Hawken et al. (1996) and Levitt et al. (1994)]. Elliptic regions
indicate literature reported standard deviations. Additionally, the theoretical
approximations for random dots (Eq. 1; solid line) and white noise (Eq. 2;
dashed-dotted line) are shown for parameter values having the same critical
speed as the best match (blue square).

Table 1. Model parameters

Parameter Symbol, Unit Fitted Values (CI)

Goodness of fit (correlation) r 86%
Spatial frequency preference �, cycle/° 3.28 (3.13, 3.44)
Temporal frequency preference �, Hz 10.4 (8.8, 12.7)
Spatial frequency bandwidth 
�, octaves 1.57 (1.38, 1.77)
Temporal frequency bandwidth 
�, octaves 6.5 (3.8, 10*)
Aspect ratio 
 1* (1*, 1.14)
Predicted critical speed �, °/s 3.7 (3.0, 4.5)

Model parameters estimated from responses to spatiotemporal grating stim-
uli (see Fig. 7, A and B) in two monkeys (M2 and M6). Because both monkeys
had slightly different chamber positions, care was taken to only include data
from overlapping cortical positions with eccentricity between 2 and 3° in V1.
Fits were obtained by using data from both monkeys simultaneously to ensure
that estimated parameters are constraint across monkeys. During fitting,
parameter ranges were constrained by physiological limits (see materials and
methods). Values on these limits are marked with asterisks. Confidence
intervals (CI) were determined by searching those values along the axis of the
parameter for which the error measure (1 � Pearson correlation coefficient)
increased by 5% above its optimal value. Predicted critical speeds are based on
the estimated model parameters. Confidence intervals for the critical speeds
were estimated by computing the speeds when each estimated parameter is
changed to either of its confidence bounds individually and by then taking the
“worst case” smallest and highest values.
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M1 should be 11.9 Hz (11.0···12.8 Hz, CI calculated as in
Table 1). If one uses a more conservative criteria to define the
CI (as in Fig. 8B: the range where the Pearson correlation is
�90% of its optimal value), the CI increases only to 7.5···17
Hz. On the other hand, in the case of the TF preference
estimation from the gratings experiment (Table 1), the CI
increases to 4···50 Hz using the same criteria (compare the blue
and green error ellipses in Fig. 8B). Thus our motion streak
paradigm constrains the TF preference estimation more than
fourfold compared with the traditional grating setting.

Taken together, given that the STF model accurately de-
scribes the data, we can use the motion streak paradigm to
estimate temporal RF properties of the underlying neural pop-
ulation more accurately than possible with traditional gratings
stimuli alone.

DISCUSSION

We previously reported the presence of axis-of-motion maps
in V1 of the macaque (Lu et al. 2010). In this study, using
optical imaging, we demonstrate velocity as well as eccentric-
ity dependency of axis-of-motion maps in V1 of the macaque
monkey. These observations are consistent with the motion
streak response (Burr and Ross 2002; Geisler 1999; Geisler et
al. 2001). We show that orientation response profiles and the
critical speeds can be accurately measured with optical imag-
ing techniques across varying eccentricities in V1. Importantly,
the critical speed is not only sensitive to slight changes of RF
properties of the neural population but can also be calculated
using the STF model. Thus a critical speed measurement
opened two opportunities. First, it established a quantitative
test of the adequateness of the STF model for average popu-
lation responses. Second, the measurement of the critical speed
(and the orientation response profiles) can be used to infer RF
properties of the underlying neural populations using motion
stimuli. We found that our approach is sensitive enough to
detect the change of population RFs with eccentricity as
expected from single unit recordings. In monkeys, imaged
regions commonly span several degrees eccentricity; however,
to our knowledge a change of RF properties was not previously
investigated using optical imaging where data are often pooled
to increase the signal-to-noise ratio but possibly confining
interpretations.

Quantitative Agreement of the STF Model

We found that the STF model was in good quantitative
agreement with the optical imaging data in V1 of macaques.
The model not only predicted the correct range of critical
speeds for most animals, it also very well explained the
observed shape of the differential response profiles. A direct
comparison of the agreement of population data in macaques
had been missing, since almost all previous studies analyzing
population activity with the STF model have been either purely
experimental studies or purely modeling studies. However, one
study (Zhang et al. 2007) tested the correspondence of the SF
responses of the STF model with optical imaging data in cats
and found a good agreement corroborating our findings in
macaques. Their approach was different in that they did not
measure the reversal point of the response (the critical speed)
to drifting dot motions but analyzed responses to sinusoidal
and square-wave patterns instead. The advantage of drifting

dots is that it leads to an inversion of the response at a precise
speed, which can be determined with high accuracy even in
noisy data (as established here). Because the critical speed can
be measured very exactly in both experiment and model, our
criteria was more demanding and represents a new approach.
The sensitivity of our approach is clearly evident in the need to
carefully restrict the eccentricity range for which we compared
model and experiment. Moreover, in contrast to Zhang et al.,
we extended the comparison to additionally account for the
orientation responses and changes in RF properties with ec-
centricity. Together, results of both studies suggest that the
STF population response model is valid across multiple species
and domain types and provides a general description of how
dot motion is represented in visual cortex.

We demonstrate for the first time that the critical speed
depends on eccentricity in V1. This dependency likely arises
from the known decrease of the preferred SF of single neurons
with growing eccentricity (Dow et al. 1981; Foster et al. 1985;
Van Essen et al. 1984) and was very well predicted by the STF
model. In fact, if one uses Eq. 1 to relate measured critical
speeds with SF preferences across eccentricities (using data of
monkey M4 in Fig. 4, A and B), the dependency on eccentricity
vanished (testing for linear trend, P � 0.58).

Although we used similarly small dot sizes across all exper-
iments presented in this study, one can nevertheless predict the
effect of changing the size of the dots in the random dot motion
stimuli from Eq. 1. It turns out that a change in dot size
(represented by � in Eq. 1) is predicted to affect the critical
speed. With the use of the RF parameters of Table 1, increasing
the dot radius from, e.g., 0.05 to 0.5°, should increase the
critical speed roughly linearly with a slope of �25°/s per dot
radius degree. Thus using for instance a dot radius of 0.2° in
respect to 0.1° should increase the observed critical speed by
�2.5°/s. Therefore, changing the SF composition of the stim-
ulus will have profound influence on the measured critical
speed.

On the other hand, changing the density or contrast of the
stimulus pattern should, in first approximation, not affect the
critical speed. Dot density or response magnitudes are not
represented in Eq. 1 because only difference responses are
considered. Taking the difference of two perpendicular move-
ment responses effectively cancels response magnitudes out of
the equation.

In addition to V1, we also found that V2 exhibits robust
axis-of-motion maps and that map inversion occurs for increas-
ing motion velocities (data not shown). It is conceivable that
some parts of V2 show a similar response profile inversions
due to the direct input of V1. To analyze and interpret V2
responses in detail, however, an extension of the STF model to
include higher visual areas would be desirable and necessary.

Variations Among Animals

Our measurements reveal critical speeds of �4°/s for dif-
ferent sites in V1. This speed was consistent across three
monkeys (M1, M3, and M5) and fell into the CI of STF model
prediction. We took the approach to estimate the model pa-
rameters from additional grating experiments. This approach
has the advantage to offer independent estimates of the param-
eters and thus renders the calculated critical speed a true
prediction and not a simple fit to the data. Moreover, we
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estimated the parameters from two further monkeys (M2 and
M6) to achieve a generalization over different animals. Relying
on data from different animals might be similar to the situation
where one wants to apply the STF model as a “null hypothesis”
model to contrast and interpret responses to complex stimuli.
Because of experimental time restrictions, extensive RF mea-
surements (i.e., measuring both TF and SF preferences) might
only be attempted in one animal or RF values might be
preferably taken from the literature. While the latter was too
restrictive here because literature values are usually pooled
across many eccentricities, we found that the former approach
yielded surprisingly good agreement across monkeys. We here
provide these RF estimates for a narrow eccentricity range
(2–3°) pooled over two monkeys (Table 1). These values could
be used when applying the STF model to other data. In one
monkey (M4), however, we found a significantly lower critical
speed (�2°/s). The SF preference in this monkey did not differ
from the monkeys M2 and M6 when measured with gratings
(around 3 cycles/° at 2–3° eccentricity; see Fig. 4B). Therefore,
it is likely that other RF parameters in this monkey were
significantly different from that of the other monkeys in this
study. Since the critical speed is very sensitive to changes in
TF preference, a systematic variation in M4 would result in a
discrepancy of the observed critical speed. In fact, a TF
preference of �3.3 Hz in M4 (as opposed to values �10 Hz in
other monkeys) would very well explain the low critical speed
measurements (see Fig. 4A, confidence values of the critical
speed predictions using the alternative TF preference as model
parameter are displayed as green bars). Note that even in the
literature on single neurons, both a TF preference of 3.7 Hz
(Foster et al. 1985) and values �10 Hz (Hawken et al. 1996)
are supported for V1 in macaques, suggesting that TF prefer-
ence might indeed be a parameter with a bimodal variability
between individual animals.

Model Considerations

We derive new analytic equations describing the population
response to drifting dots. Previous studies (Mante and Caran-
dini 2005, Baker and Issa 2005) were limited to numerical
calculations. These analytic equations lead to a qualitatively
improved model fitting that enables the inference of RF prop-
erties from the optical imaging data. This inference of RF
properties from complex optical imaging responses demon-
strated in our study is a new concept. It has not been investi-
gated or discussed by the previous studies.

We also examined whether the fit could be improved with
adjustments to the shape of the RF filter. We here used
classical Gabor functions as spatial RFs (Jones and Palmer
1987). However, there are some disadvantages to using Gabor-
shaped filters for explaining experimental data or coding nat-
ural scene information (Field 1987; Hawken and Parker 1987;
Stork and Wilson 1990). In particular, unlike experimental
data, low frequency components are passed too readily by
Gabors as they include a strong DC component (mean). To
overcome these disadvantages, other RF filters have been
proposed, such as Log-Gabor or Difference-of-Gaussians
(Field 1987; Hawken and Parker 1987). We tested whether
modified RF structures would improve the fit to the data (on
single condition optical imaging responses in V1 to gratings of
6 different SFs) and found that correlations could be improved

from 82% (Gabor RF) to 96% for alternative RF structures (see
Fig. 9). However, when fitting the drifting dots data from Fig.
8 with these alternative RF structures, the overall fit was not
significantly improved. This suggests that, in cases where the
nonorientated DC component is largely subtracted out by
taking the difference between two orthogonal conditions, Ga-
bor RFs are already a very good model. Moreover, because
Gabor RF additionally allow the response equations to be
solved analytically, we chose to use Gabor RF filters in our
derivation of the STF model.

For mathematical convenience, we modeled the temporal
response as a Gabor function as well, as was done previously
(Adelson and Bergen 1985; Grzywacz and Yuille 1990). How-
ever, it is known that physiologically the temporal response is
better fitted by other functional forms (Adelson and Bergen
1985; Robson 1966; Watson and Ahumada 1985). In particu-
lar, Gabor functions are nonzero for negative times and there-
fore noncausal filters. However, since on average the TF
information does not change in our stimulus paradigm (the dots
are drifting with constant speed), causality is of no concern
here. We also did not need to include nonlinear contrast gain
control [such as divisive normalization (Heeger 1992)] because
we investigated stimuli of identical and fixed contrast.

Inferring Population RF Properties Using Complex Stimuli

Given our results that the STF model provides a good
quantitative description of optical imaging responses in V1,
one can use the motion stimulus paradigm for the estimation of
temporal RF parameters otherwise not easily accessible with
intrinsic BOLD methods. If one had information of the SF
preferences available (for instance by fitting gratings responses
of different SFs as can be accurately done), we showed that
measuring the critical speed would be an alternative way to
accurately estimate the TF preference in V1. Note that the
critical speed according to Eq. 2 is approximately proportional
to the TF preference with proportionality constant of �1 (for
typical RF values in V1). Thus a change in TF preference will
results in a change of the critical speed of the same order of
magnitude. In contrast, when we estimated the TF preference
using the traditional grating paradigm, doubling the TF of the
gratings almost did not change the response profiles due to the
wide temporal band-pass property of V1 neurons (see, e.g.,
Fig. 7A), rendering the estimation of the TF preference very
difficult when relying on gratings. We found that this large
uncertainty in TF preference estimation can be reduced dras-
tically if relying on motion responses.

We here showed that inference of RF parameters during
more complex stimuli presentation might outperform tradi-
tional grating settings. Additionally, one could extend our
method to use drifting patterns of, for instance, naturalistic
noise (Field 1987) or natural images, with the additional
advantage that the RF properties are estimated within a realistic
stimulus regime instead of being based on rather artificial
responses elicited by gratings. In fact, the accuracy of measur-
ing temporal aspects of RF properties with this approach is
remarkable because the temporal resolution of the optical
imaging method is intrinsically slow (a few to several sec-
onds). The crucial feature for yielding high accuracy is that
spatiotemporal interactions are projected onto the orientation
axis; in this way, the spatial resolution of the optical imaging
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method can be exploited to measure temporal response prop-
erties of the underlying neural populations.

APPENDIX

Average Neural Response

In the classical filter model of the visual system (Hubel and Wiesel
1962; Movshon et al. 1978; Adelson and Bergen 1985; Watson and
Ahumada 1985; Mante and Carandini 2005), the responses of simple
neurons are proportional to the local luminance intensity falling in the
RFs of the neurons and is calculated as the convolution of the RF filter
kernel K � K (x, y, t; x’, y’, t’) and the stimulus S � S ( x’, y’, t’ ),
namely rs(x, y, t) � S * K. The average response of neurons having
different preferred positions in visual space, but otherwise the same
RF properties, is proportional to the integral of the responses over
visual space and time. Neglecting constant factors for simplicity, we
thus can write the average activity as �rs� � �S�K dx dy dt. However,
because the optical imaging method mostly records activity of the
exposed upper layers of the cortex, the measured responses will
mostly reflect the activity of complex cells (Martinez et al. 2005).
Complex neuron responses are commonly assumed to be proportional
to the luminance energy, which is related to the square of the output
of simple cells. This is called the energy mechanism (Adelson and
Bergen 1985).

The average response of complex cells is therefore related to the
integral of the square of the response of simple cells. However, we do
not have yet respected the phase invariant property of complex cells,
which is assumed to arise by summing input from phase-shifted
simple cells, also called quadrature pair (Adelson and Bergen 1985).

Changing to the Fourier domain, it is straightforward to include the
phase invariance responses of complex cells by setting

�rc�2 � � � 	S
�2� 	K
�2 d�xd�yd�t (A1)

The product of the absolute values ensures that the phase of the RFs
optimally match the phase of the stimulus thereby maximizing the
response (Cauchy-Schwartz Inequality). We use Eq. A1 to model the
average response of complex cell populations (Adelson and Bergen
1985; Mante and Carandini 2005). Intuitively, the average neural
response is calculated by averaging the energy of the stimulus, which
falls in the RF of the neural population in the Fourier domain.

Receptive Fields

We next consider how to choose the RF filter K according to
physiology. It is well known that the shape of classic RFs in V1
resemble Gabor functions (Jones and Palmer 1987). A Gabor function
is a sinusoidal wave multiplied by a (normalized) Gaussian. In
complex terms, it can be expressed as (Movellan 2002):

G�x� � �2�
�	
1
2exp�	

1

2
xT
 	1x � 2�i�Tx� (A2)

The frequency vector � � (�x, �y)
T simultaneously defines the

preferred (radial) frequency, |� |, and the preferred orientation � �

tan	1
�y

�x
of the neural population. The Gaussian envelope of the

sinusoidal is defined by the covariance matrix �. It is known from
experimental observations (Ringach et al. 2002) that the envelope
might be slightly elliptic, where the shorter half-axis of the ellipse a
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Fig. 9. Alternative RF structures result in
superior fits to single condition maps at the
population level. Here, we tested 3 possible
modifications of the spatial RF. All 3 modify
the form of the standard RF (A) along the
radial spatial frequency axis in frequency
domain. In all 3 modifications, the orientation
component was chosen to be of the shape of
a Mises distribution, which resembles a rota-
tional Gaussian function. A: Gabor RF. Note
the nonorientated DC-component. B: log-Ga-
bor RF resembling a Gaussian function for
logarithmic radial SF as suggested by (Field
1987). C: hermite function of order one sug-
gested by (Stork and Wilson 1990). D: new
RF form defined by the shape of the Gamma-
distribution on the radial SF axis. All the
above functions had only 2 free parameters,
the mean and the bandwidth. Variance was
chosen to ensure a constant bandwidth over a
range of preferred frequencies. Left: predicted
responses of the RFs, which yielded the best
match to single condition responses to grat-
ings of 6 different spatial frequencies. Right:
experimental responses to gratings (black
curves) and model fit to the data (red curves).
Gamma-Mises RFs perform best, improving
the fit to the single condition responses sig-
nificantly compared with the Gabor RF in A.
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is in the direction of the frequency normal �. Thus it is convenient to
switch to polar coordinates, � and �, write � � � (cos �, sin �)T and
rotate the covariance matrix according to the RF orientation, � �
R(�)T diag [(a2, b2)] R(�) where R(�) is the two-dimensional rotation
matrix. The half-axes a and b, with b � a, define the shape of the
Gaussian envelope. To use physiological meaningful parameters, one
can show (Movellan 2002) that, with the definition of an aspect ratio

 � b/a, a and 
 are related to the half-magnitude frequency bandwidth

� (in octaves) and the half-magnitude orientation bandwidth 
� in the
following manner. With constant k� � (2
� � 1)/(2
� � 1), it is

a �
�log4

2��k�

(A3)

And


 �
k�

tan�1

2
��� (A4)

Thus one can use physiological meaningful parameters to set up the
model (see below).

The temporal response profile of a neuron in V1 typically consists
of an excitatory drive followed by a weak inhibition. This phasic
response property can be idealized as a temporal Gabor function G(t)
(Adelson and Bergen 1985), with standard deviation �t and TF �.
Analogous to the SFs (Eq. A3), one can relate the standard deviation
�t to the half-magnitude TF bandwidth 
� (expressed in octaves).
With the constant k� � (2
� � 1)/(2
� � 1)

�t �
�log4

2��k�

(A5)

If we for simplicity assume separable temporal and spatial filters, the
overall spatiotemporal RF can thus be expressed as a three-dimen-
sional Gabor function K(x, y, t) � G(x, y)G(t).

Conveniently, the Fourier transform of a Gabor function results in
a Gaussian function in frequency domain. Its standard deviations are
proportional to the inverse of the standard deviations in the spatial
domain, and its mean is centered at the preferred spatial and TF of the
RF. For the two-dimensional spatial RF with � � (�x, �y)

T, this yields

� 	G�x�
���� � exp�	2�2�� 	 ��T
�� 	 ��
 . (A6)

The Fourier transform for the temporal filter is computed analo-
gously. With these derivations we can write for the average neural
response

�rc�2 � � � 	S
�2exp�	4�2�� 	 ��T
�� 	 ��
	 4�2�t

2��t 	 ��2
d�x, d�y, d�t

(A7)

Taken together, the RF is defined by its preferred orientation �,
(radial) SF �, and TF �, and the respective half-magnitude bandwidths

�, 
�, and 
�.

For simplicity of the equations, our derivation of the response
�rc� � �rc��, �, ��� in Eq. A7 started from a complex Gabor function
Eq. A2 and thus does not show invariance of the response to a rotation
by 180° in visual space or to a 180° switch in the movement direction.
If the Gabor function is composed of a real sine function (as in
physiology), then the Fourier transform Eq. A6 is given by the average
of two Gaussians, one centered at � the other mirrored at ��.
Multiplication with the two similarly mirrored temporal RF results in
altogether four Gaussian blobs in frequency space. Calculating the
power (Eq. A1) further introduces additional cross multiplication
terms between any two blobs if the Gaussian blobs overlap signifi-
cantly in frequency space [see Jones and Palmer (1987) and Grzywacz
and Yuille (1990) for a derivation starting from real-valued Gabors].
We use the full equation for the response in RESULTS, but neglect the

residual cross-terms for the derivation of the critical speed expression
(see below). This approximation is valid if the Gaussian blobs are far
apart and nonoverlapping (for instance if having a small bandwidth) in
which case the values of the residual cross-terms get negligibly small.

RF Parameters in the Literature

Since we defined the RF in a physiologically meaningful way,
literature parameters could be used to define reference RFs for V1
and initialize the STF model. However, since parameter values
have been estimated on single units electrophysiological record-
ings rather than optically imaged responses of neural populations,
we refer to literature values only for comparison, and instead
estimate the population RF parameters of the STF model using
optical imaging measurements obtained in our experiments (see
RESULTS).

In V1, most cells in the upper layers are reported to be orien-
tation selective (95%) (Leventhal et al. 1995). The peak (para-
foveal) SF preference in macaques ranges from 1.5 cycles/° to �6
cycles/° with a medium of 2.2 cycles/° (Foster et al. 1985). Other
studies measure an average of �3.2 cycles/° for complex cells (De
Valois et al. 1982a). The half magnitude SF bandwidth ranges from
1 to 3 octaves for complex cells, with a mean of 1.7 (Foster et al.
1985). Others report a similar value of 1.5 octaves for complex
cells in macaque (De Valois et al. 1982a). Typically, orientation
bandwidths for complex cells are a bit higher than for simple cells
(De Valois et al. 1982b), with median of 44° and mean of 79°.

Temporal properties of neurons in V1 seem to be more diverse
(Foster et al. 1985). Neurons with band-pass properties are reported to
have an average preferred TF of �3.7 Hz (Foster et al. 1985),
although other more recent studies report an average of 10Hz
(Hawken et al. 1996). Neurons have bandwidths between 2 and 4
octaves, with an average of 2.75 octaves (Foster et al. 1985). Taken
together, the evidence indicates there is a considerable variation in the
average TF bandwidth in V1 neurons in macaque. Thus the temporal
bandwidth is generally higher than the spatial bandwidth, leading to a
sharper tuning for SFs.

Note that all these values are measured in parafoveal regions. Near
or in the foveal region, RF parameters change. In particular, optimal
SF preference increase profoundly: Foster et al. (1985) reports a
doubling for V1. Other parameters are less affected by eccentricity.

Calculating the Expected Average Responses of the STF Model to
Drifting Random Dots

To be able to compute the expected response of a neural population
using Eq. A7, we first have to define the stimulus S(x, y, t). Here we
are concerned with a static luminance pattern N(x, y), which moves
with constant speed � along one direction of the visual field. Without
loss of generality, we set the direction of movement in the y-direction,
as other directions can be derived by simple rotation. Thus our
stimulus has the form S(x, y, t) � N(x,y � �t).

It is easy to verify that the Fourier transform of such a stimulus S
is computed as

	N�x, y � �t�
 � 	N
��x, �y�����y 	 �t� (A8)

where �() is the delta-function. Thus, while the spectrum in �x-
dimension is unaffected by the movement, the power of the stimulus
will be distributed along the �y- and �t-dimensions. Specifically, the
original power spectrum of the luminance pattern 	N
��x, �y� is
projected on a plane, which is tilted towards the TF dimension. The
tilted plane is defined by �t � ��y, as can be seen from Eq. A8. Thus,
the larger the speed � the more the plane is tilted into the TF direction.
Substituting the result of Eq. A8 into Eq. A7 yields

�rc�2 � � � 	N
��x, �y��2exp�	4�2�� 	 ��T
�� 	 ��
	 4�2�t

2���y 	 ��2
d�x, d�y

(A9)
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It turns out that this integral can be solved for specific luminance
patterns N(x, y) analytically, when a simple form of the spectrum of
N(x, y) is known. For instance, for white noise luminance patterns the
Fourier transform 	N
 is just constant and Eq. A9 can be solved
straightforwardly. When using grating stimuli, the Fourier transform
becomes a delta-function at the frequency of the grating, and thus the
average neural response is given by the integrand of Eq. A9 evaluated
at the frequency of the grating.

In our main experiments, we used coherently moving, randomly
positioned luminance dots as stimuli. In this case, the luminance
pattern N(x, y) is composed of randomly placed disks Dr(x, y) of
radius r [where Dr(x, y) � 1 if x2 � y2 � r and otherwise 0]. In
practice, we used 2 � 2 square pixels rather than disks; we approx-
imate these by a disk of radius 1 pixel lengths. Because luminance
disks are positioned at random positions (xi, yi), one can mathemati-
cally express the stimulus as convolution of disks Dr(x, y) with
randomly placed delta functions, i.e., N(x, y) � Dr * H and H(x, y) �
�i�(xi � x, yi � y). If we assume a sufficiently large number and a
spatially uncorrelated placement of the delta functions, the Fourier
transform of H becomes constant (because the auto-correlation is a
delta function). Taken together, we can approximate 	N
��x, �y� �
c 	Dr�x, y�
, meaning that the mean spectrum of the random dots is
approximately proportional to the spectrum of an uniform disk.
The Fourier transform of a uniform disk is well known and related
to the so-called “Airy disk” in optics (Airy 1835). It turns out that
one can approximate the amplitude of its spectrum by a Gaussian

with width � � 0.044
2�

r
:

� 	Nrdots
��x, �y�� � c exp�	�x
2 	 �y

2

2�2 � (A10)

This approximation is equivalent to assuming that the random dots are
not formed as disks of uniform luminance but as small circular
Gaussian blobs. Since we have to scale the response to match the
optical imaging recordings anyway, the proportionality constant c
reflecting the density of the dots, is irrelevant and set to 1.

By substituting Eq. A10 into Eq. A9 and solving the integral, the
average response to random dots stimuli can be computed analyti-
cally. Note that the integral has to be solved for the different RF
“blobs” and residual cross-term of the bidirectional neural population,
as described above. We do not state the formula here because of its
length but nevertheless use it for computing the average response in
the RESULTS.

Taken together, we have derived formulas for predicting and
calculating the average neural responses to drifting random dots for
any given RF parameters and dot size.

Calculating the Critical Speed

When increasing the speed, the energy of the stimulus gradually
shifts from a neural population preferring orientations perpendicular
to the axis of motion to the domains parallel to it. The response profile
will reverse at a critical speed �, when the average responses around
the perpendicular orientation equals the response around the parallel
orientation. To derive an analytic expression for this critical speed, we
approximate the critical point by calculating when the domains
preferring perpendicular and parallel orientations respond equally.

Considering the geometry in frequency space of two orthogonal,
bidirectional neural populations, at the critical speed the following
relation should approximately hold

�rc��, �, ���2 � 2�rc�0, �, ���2 (A11)

The weighting of two for the orientation domain parallel to the axis of
movement originates from the fact that both directional components
of the parallel domain are similarly activated, i.e., intersected by a

tilted plane. In contrast, only one directional component of the
orthogonal domain is activated when tilting the plane, as can be seen
from the geometric arrangement of the RF blobs in frequency space
(see Fig. 5E).

For the case when the aspect ratio is 
 � 1, Eq. A11 results in an
quadratic equation and can be solved for the critical speed �. With the
definitions d� � 2��a � �log4/k� and d� � 2���t � �log4/k�

(signifying the bandwidths, see Eq. A3 and Eq. A5) it is

�RD � �� d�

d��
�

� '

�d�
�d�d� � �d�

2�d�
2 	 log2� 	 �1 ��' 2�log22

d�
2 � �1 ��' 2�log2

(A12)

using the abbreviation �= � �/(d��). Note that for � ¡ � (meaning for
very small dot sizes) it follows �= ¡ 0 and Eq. A12 resembles the case
for white noise, namely

�w � c�

�

�
(A13)

with proportionality constant c
 � [d�
2 
 d�/d�

� d�
2(d�

2�log2)�log22]/
(d�

2 � log2). For physiologically realistic values, it is approximately
c� 	 1.5. Thus the critical speed is (mainly) determined by the ratio
of the TF and SF preferences of a neural population, which we term
the “preferred speed”. We noticed that for the relatively small dot
sizes in the experiments (ca. 0.12°), the linear relation Eq. A13
approximated the relation Eq. A12 reasonable well in the physiolog-

ical relevant frequencies, and therefore �RD � c�

�

�
.

Note that we neglected the residual cross-terms of the RF in Fourier
space in the derivation of the critical speed. Since these cross-terms are
small when the four Gaussian blobs do not significantly overlap, the
critical speed will be accurately predicted if the bandwidths are small. If
the bandwidths are large, the cross-term will be more beneficial for the
parallel orientation domain. Moreover, if the dot size was much bigger
than the preferred frequency of RFs, but the bandwidth was still big
enough so that there was a response, the assumption Eq. A11 is not valid
anymore because the RF “blobs” are considerably overlapping in a region
where the bulk of the power of the stimulus is distributed (in this case the
square root term of Eq. A12 gets complex). In consequence, although
useful for understanding the dependence of the RF parameters on the
critical speed in the case of small bandwidths, the approximate critical
speed of Eq. A12 will tend to be inaccurate for large bandwidths. In
RESULTS, we therefore numerically estimated the critical speed by search-
ing for the zero crossing in the phase of the predicted orientation
difference profiles for increasing drifting speeds (using the analytic
response equation for bidirectional RFs including cross-terms).
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